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1. Basic Concepts 

1.1 Introduction 
The present chapter introduces the basic concepts about stability of structures. Making reference 

to simple discrete systems, it deals with the basic methods and approaches to be applied and pursuit 
when the study of structures stability is of concern. 

Definition of equilibrium conditions is the first subject of the discussion; it is based on 
“quantitative” relationships involving forces acting on the system and its relevant geometric and 
mechanical properties, such as dimensions, stiffness and mass. Discussion about stability of structures 
begins just after such a definition of equilibrium conditions; it basically examines the aspect of the 
“quality” of the equilibrium configuration possibly achieved by the system. As intuitive, “quality” of 
equilibrium – for both rigid bodies and elastic or even non-linear systems - can be classified on the 
basis of its possible evolution after a possible (even small) perturbation on the system while resting in 
its equilibrium condition. Under this standpoint, basic mechanical knowledge and physical every-day 
intuition draw to the following three possible definitions for an equilibrium configuration of the 
system: 

- stable equilibrium, if the system after perturbation come back to the initial equilibrium 
configuration, possible through small oscillations in its neighbours; 

- unstable equilibrium, if a perturbation however small in intensity results in a change of the 
initial equilibrium configuration; 

- neutral equilibrium, if the system achieves in a new equilibrium configuration, passing 
through other equilibrium configurations, depending on the intensity of the perturbation. 

The three rather different situations described above are usually emphasized through a very 
popular illustration dealing with the static equilibrium of rigid body reported in Figure 1.1. 

 
Figure 1.1: Three different equilibrium conditions of a ball in a gravity field 

Since equilibrium problems can be (and usually are) solved in terms of balance between force 
acting on the (free) body, a static approach can be even pursuit not only for finding the equilibrium 
configuration of a system (namely, those in which acting and reacting forces definitely balance one 
another), but even for discussing the “quality” of such an equilibrium condition in terms of the three 
possible attributes listed and defined above. 

Nevertheless, since such definition has been done in terms of “perturbations” and “oscillations” 
a dynamic approach to equilibrium seems needed to go in depth about its “quality” in the sense reported 
above. Equation of motions can be written for the system starting from its current equilibrium 
condition to ascertain whether it tends to come back to the original condition or evolves towards other 
more stable ones. Writing, solving and discussing dynamic equations usually results in more 
complicated mathematical procedures involving parameters non-needed by other ones (such as mass of 
body). 

On the contrary, one more different approach can be followed for studying stability of systems 
and structures. In fact, the three images reported above basically connect the mentioned “nature” or 
“quality” of equilibrium with the “position” of the equilibrium point. The physical meaningfulness of 
the three situations depicted in Figure 1.1 can be increased by the fact that in a gravity field the 
functional Potential Energy U. Consequently, a different way of facing the problem of stability of 

stable unstable neutral 
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structures can be based on an energy approach for which a conceptual correspondence can be stated with 
Figure 1.1, as will be explained within the next paragraphs. 

The basic definitions given for the “quality” of equilibrium configuration with reference to the 
simple free body depicted in Figure 1.1 need to be generalized to structural systems usually made of 
flexible member connected one another for facing the loads and action applied on them. Nevertheless, 
a hopefully meaningful application of the three mentioned approaches will be carried out in following 
sections of the present chapter on simpler systems made of rigid bodies connected one another by a 
finite number of flexible elements (basically linear springs) with the aim of providing the readers with 
the basic insights on stability of structural systems. These structures are usually named “discrete 
system” and so will be done in the following of this text. 

Euler definition of stability will be firstly referred to discrete structures pointing out the condition 
of possible alternative equilibrium configuration available for the system (affected by no imperfections 
and in equilibrium in its reference position) when (axial) loads achieve a certain “critical” value: this 
possible availability of more than one configuration is currently named as “bifurcation” of equilibrium. 
Moreover, imperfections do play a relevant role in the so called “equilibrium path” (namely the 
relationship between the current value of loads and the corresponding equilibrium configuration of the 
system) and their influence will be even analyzed in this chapter with reference to the mentioned 
discrete systems. 

Finally, bifurcation, instability onset (namely “buckling”) and the way in witch initial 
imperfections of the system affect them will be analyzed in the light of the Koiter’s theorems which are 
a very powerful tool for understanding the “quality” of a given equilibrium position. 

1.2 Euler definition of stability 
Equilibrium of bodies or structures can be studied within the framework of various hypotheses. 

In particular, a relevant class of equilibrium problems is usually named Euler problems and is based 
upon the two following hypotheses: 

- small displacements of the structures starting from a reference equilibrium configuration; 
- perfect or “ideal” systems, namely absence of geometric and mechanical imperfections 

(accidental eccentricity, lack of straightness or verticality, and so on). 
When these two hypotheses are contemporarily considered in equilibrium problems the Euler 

definition of stability can e investigated with the implications that will be pointed out in the following 
with reference to simple systems and according to different methodological approaches. 

1.3 Discrete systems  
In the present section, three possible approaches for studying the stability of equilibrium will be 

outlined; application to simple discrete systems will point out the conceptual and operational 
differences among them. Two basic reasons justify the choice of discrete systems rather than the most 
common continuous ones: 

- first of all, since the focus in the following discussion is on meaning of different approaches, 
examples characterized by simple calculations (such as needed and sufficient for discrete 
systems) have been preferred; 

- analysis of continuous structures is usually carried out through discretization techniques 
(Finite Element Method, among the others); consequently the mathematical formulation of 
the equilibrium and stability problems for continuous structures could be not so different 
with respect to discrete ones. 

1.3.1 Static approach 
The first approach for stating equilibrium problems is based on a static approach in which the 

sum of actions and reactions (in terms of either forces or moments) are imposed to be zero. 
Consequently, equilibrium equation can be directly imposed on a deformed configuration in the 
neighbours of the reference one considering the effect of displacements of the forces applied of the 
structure. For instance, one can consider the simple discrete system made out of a rigid bar whose 
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length is L, connected to the soil by a hinge and a rotational spring k and loaded of the opposite end by 
an axial load P (Figure 1.2). 

P

L
k

 
Figure 1.2: Discrete system #1 

According to the Euler hypotheses listed in paragraph 1.2 the bar is straight and the load is 
perfectly centred and vertical in position. The static approach can be now pursued by considering a 
deformed configuration for the system which is described by the only kinematical parameter θ (Figure 
1.3). 

 
Figure 1.3: Discrete system #1: deformed configuration for applying the static approach 

A simple equilibrium condition can be stated in terms of moments around the base hinge; only 
two contributions participate play a role in the equilibrium of the above system: the axial load applied 
on the deformed configuration and the rotational spring, was moment is proportional to the actual 
rotation θ: 

sin 0PL kθ θ− =  . (1.1)
If the first of the two Euler hypotheses applies (namely, small displacements), then the value of 

the sine can be approximated by its argument and equation (1.1) can be written as follows: 
[ ] 0PL k θ− ⋅ =  . (1.2)

The above equation points out that two possible solutions (and two corresponding equilibrium 
configurations) can be found for the system: 

L

k

P P

L sinθ

θ  
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- the trivial configuration, described by the solution 0θ =  which firstly satisfy the above 
equilibrium equation; 

- a bifurcated solution obtained as the first factor of equation (1.2) vanishes: 

0 E
kPL k P P
L

− = ⇒ = =  ; (1.3)

such a condition occurs as the external load attains the value PE, which is a bifurcation load in 
the sense that under PE the system can switch out from its (trivial) configuration toward a 
bifurcated one. 

Static approach carried out under the mentioned Euler hypotheses, leads to describe the 
equilibrium paths as a bifurcation phenomenon which can have place for a precise value of the external 
load P equal to PE. Figure 1.4 show the equilibrium path, namely the couples (θ, P) obtained by solving 
equation (1.2). 

 
Figure 1.4: Discrete system #1: bifurcation phenomenon derived under the  Euler assumptions 

Although the static approach lead to a rather simple way for evaluating all the possible 
equilibrium configurations of the system, nothing can be deduced for qualifying the single branches of 
the equilibrium path in terms of stability. Physical sense could suggest that the vertical branch would be 
of stable form the origin to P<PE and unstable above that value, but no quantitative evaluation can be 
done on that issue. Moreover, nothing can be understood for the linear branch, where the key 
hypothesis of small displacement is not always verified. 

1.3.2 Dynamic approach 
If one keeps in mind the rather intuitive definitions of stability corresponding to the basic ideas 

depicted in Figure 1.1, dynamic approach for stability would be a somehow “natural” framework for 
studying equilibrium and stability of bodies and structures. Indeed, the idea of stable equilibrium is 
associated to small perturbations resulting in oscillation of the body around its initial configuration; on 
the contrary, a diverging motion stems by even small perturbations if the initial equilibrium 
configuration is unstable in nature. The words “oscillation” and “motion” are strictly related to the 
dynamic behaviour of the system after its perturbation. Consequently, if one looks after the same 
simple system mentioned above, whose configurations are described by only one kinematical 
parameter, the equation of motion stemming from the initial perturbation leading the system in a 
different position described by θ=θ0>0 can be easily obtained through the well-known D’Alembert 
Principle introducing the mass m of the system: 

0F mz− =  , (1.4)

θ 

P/PE

1 

P

Bifurcation point
(P=PE)P 
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that can be written as follows in terms of moments and angular frequency (rather than forces F and 
linear acceleration z  because of the circular nature of motion): 

0M Iθ− =  . (1.5)
In the last equation M is the sum of moments of the external forces with respect to the hinged 

end of the bar: 
sinM PL kθ θ= −  , (1.6)

while the second moment I of the bar with respect to the hinged end can be evaluated as follows: 
3

2

0
3

L LI x dx μμ= =∫  , (1.7)

being μ the linear mass density of the system (Figure 1.5). 

 
Figure 1.5: Discrete system #1: Dynamic approach 

Equation (1.5) can be easily simplified by introducing the lat two expressions obtaining the 
following equation of motion: 

3

sin 0
3
LPL k μθ θ θ− − ⋅ =  . (1.8)

According to the first of the two Euler hypotheses, the sine function can be well approximated 
by its argument and the following expression can be obtained for the equation of motion: 

[ ]3
3 0PL k
L

θ θ
μ

− − =  , (1.9)

which is a linear second-order differential equation whose solution depends upon the sign of the 
following term: 

[ ]2
3

3 PL k
L

ω
μ

= −  . (1.10)

The two cases described below can occur: 

- [ ]
μ

− <3
3 0PL k
L

, namely E
kP P
L

< = : in this case the equation of motion takes the following 

form: 
2 0θ ω θ+ =  , (1.11)

whose general solution is: 
( ) sin cost A t B tθ ω ω= +  , (1.12)

θ 

L sinθ

P

k

L

xθ μdx
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and the constant terms A and B could be found imposing the suitable initial conditions in terms 
of displacement ( )0θ  and velocity ( )0θ . For whatever values of such initial condition the 
motion consists in oscillations of the body around the initial configuration due to the oscillatory 
nature of trigonometric functions: consequently, if P<PE the equilibrium in stable; 

- [ ]
μ

− >3
3 0PL k
L

, namely E
kP P
L

> = : in this case the equation of motion takes the following 

form: 
2 0θ ω θ− =  , (1.13)

whose general solution is: 
( ) t tt Ae Beω ωθ −= +  , (1.14)

and the constant terms A and B could be found imposing the suitable initial conditions in terms 
of displacement ( )0θ  and velocity ( )0θ . Nevertheless, the nature of motion is always diverging 
since the positive exponential of equation (1.14) is a strictly increasing function which describe 
the motion of the body which abandon the initial equilibrium position toward another 
configuration: consequently, if P>PE the equilibrium in unstable. 

Finally, besides its procedural difficulties, dynamical approach is the closest one with respect to 
the intuitive definition of equilibrium stability represented in Figure 1.1 for a rigid ball within the 
gravitational field. Consequently, further information about the quality of equilibrium has been drawn 
for the two vertical branches of the equilibrium path represented in Figure 1.4., showing that the lower 
part (P<PE) is stable in nature, while the upper one (P>PE) is unstable. On the contrary, nothing can be 
said about the nature of the horizontal post-bifurcation branch: large displacements occur after 
bifurcation and Euler can only provide the bifurcation point, but is not fit for describing post-buckling 
behaviour. 

1.3.3 Energy approach 
A third possible approach can be put in place for facing the problem of equilibrium and stability 

of bodies and structures. This approach can be once more introduced starting from the sample 
problem of the rigid ball within the gravitational field, whose equilibrium configurations are achieved in 
points of minimum or maximum height. Indeed, only in those points the work made by the (vertical) 
gravitational force for all the possible displacements (namely, virtual displacements) is zero. This 
condition can be generalized to the case of elastic structures through the Principle of Minimum of 
Total Potential Energy Π which can be defined as the sum of the elastic deformation energy E and the 
(opposite of) the work W made out by the external loads: 

Π = −E W  . (1.15)
The functional Π is defined in terms of the displacements needed for describing the deformed shape of 
the given elastic system. In particular, a simple analytical expression can be found for the discrete 
system represented in Figure 1.3: 

( ) ( )θ θ θΠ = ⋅ − ⋅ −21 1 cos
2

k PL  , (1.16)

and the equilibrium configurations can be determined through the mentioned principle as points of 
stationarity (namely, values of the parameters in which the gradient of Π is zero) as follows: 

θ θ
θ
Π

= ⇒ ⋅ − ⋅ =0 sin 0d k PL
d

 . (1.17)

The above equation can be solved under the usual small displacement hypothesis considered in the 
Euler formulation of equilibrium and stability: 

[ ] θ− ⋅ = 0k PL  . (1.18)
and the bifurcation phenomenon occur as P=PE.  
The nature of equilibrium can be deduced by studying the sign of the second derivative (namely, the 
Hessian matrix, in the case of multi-degree of freedom systems): 
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- equilibrium is stable if the function Π has a local minimum point, namely, in the cases of 
single degree of freedom systems, the second derivative is positive; 

- equilibrium is unstable if the function Π has a local maximum and, consequently, the second 
derivative is negative. 

The second derivative of Π can be easily determined as follows: 

θΠ
= − ≈ −

2

2 cosd k PL k PL
dz

, (1.19)

and its sign can be easily derived: 

- Π
>

2

2 0d
dz

 as > ⇒ E  P<Pk PL , meaning that equilibrium is stable in the lower part of the 

vertical branch; 

- Π
<

2

2 0d
dz

 as < ⇒ E  P>Pk PL , meaning that equilibrium is unstable in the upper part of the 

vertical branch. 
Finally, the same conclusions derived through the dynamic approach can be achieved by the 

energy-based approach for determining the equilibrium positions of the systems and its stability. No 
further insights have been derived about the post-bifurcation branch as a result of the limitation 
imposed by the small displacement hypothesis that will be finally removed in the next section for 
understanding the post-buckling behaviour in terms of equilibrium path and its stability conditions. 

1.4 Post-buckling behaviour 
Euler problems are based on the two mentioned assumptions (small displacements and perfect 

systems) and under those hypotheses the equilibrium of structures and bodies can be found for a basic 
“trivial” configuration, but under given load values the system configuration can switch toward an 
adjacent one. Since large displacements naturally originate after bifurcation, the study of post-buckling 
behaviour of structures can be pursued by considering large displacements. Consequently, the above 
calculation can be made anew by without simplifying the expressions obtained through one of the three 
approaches described above. In particular, as a result of its conceptual comprehensiveness and practical 
simplicity, the energy-based approach will be pursued in the following. The equilibrium condition for 
the above mentioned system is described by equation (1.17) which can be solved as follows with respect 
to the external load P: 

θ
θ

=
sin

PL
k

 , (1.20)

and, introducing the definition of the Euler load PE given by (1.3), the following equation can be 
obtained: 

θ
θ

=
sinE

P
P

 . (1.21)

Equations (1.20) and (1.21) are represented in Figure 1.6 where a curved path, stemming out form 
the bifurcation point, is ruled by the relationship reported at the right member of both equations. 
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Figure 1.6: Discrete system #1: Post-Buckling behaviour 

The quality of equilibrium throughout this curved path reported within the (θ, P/PE) plane can 
be discussed by looking after the second derivative of the Total Potential Energy Π already evaluated 
and reported in equation (1.19) where the expressions without small displacement simplification is of 
interest for the post-buckling behaviour: 

θΠ
= −

2

2 cosd k PL
dz

 . (1.22)

The sign of the second derivative of Π throughout the post-buckling path can be deduced by 
introducing equation (1.20) in (1.22) and obtaining the following condition: 

θ
θ

Π
> ⇔ − >

2

2 0 1 0
tan

d
dz

 , (1.23)

which is true for every value of θ belonging to the range [0, π/2). Consequently the post-buckling 
behaviour is stable. 

Nevertheless, a variety of possible behaviours can occur after bifurcation. To have an example of 
a significantly different one, the system represented in Figure 1.7 can be examined. 

 
Figure 1.7: Discrete system #2: Trivial and adjacent configurations 

According to the energy-based approach, the following expression for the Total Potential Energy 
Π can be written as follows: 

( ) [ ] ( )θ θ θΠ = ⋅ − ⋅ −2
1

1 sin 1 cos
2

k L PL  , (1.24)

and its first derivative can be evaluated as follows  

P (P=PE)
Bifurcation point

P

1

PL/k

θ 

θ L

k1
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θ θ θ
θ
Π

= ⋅ − ⋅ =2
1 sin cos sin 0d k L PL

d
 . (1.25)

If both the basic assumptions of the Euler approach apply, the first-order approximation can be 
adopted for the above equation whose final expression is reported below 

[ ] θ− ⋅ =1 0k L P  , (1.26)
which defines the value of the Euler load PE=k1L resulting in a bifurcation in equilibrium path of the 
system. Figure 1.8 shows that the second system analyzed under the Euler assumption behaves like the 
first one, since the equilibrium path consists of a vertical branch corresponding to the trivial 
configuration (θ=0) and an horizontal one (P/PE=1) representing the bifurcation condition attained for 
the Euler critical value PE. 

Post-buckling behaviour is even of interest for this system, since significant differences with 
respect to the first one could be pointed out, even if a formal equivalence between the two systems has 
been deduced under the Euler assumptions. Equation (1.25) describes the post-buckling behaviour in 
large displacements and can be easily solved with respect to the external load P and introducing the 
above definition of the Euler load PE: 

θ= =
1

cos
E

P P
k L P

 , (1.27)

Equation (1.27) describing the equilibrium path is even represented in Figure 1.8 which points out 
as post-buckling is a decreasing branch stemming out from the bifurcation point. 

 
Figure 1.8: Discrete system #2: Bifurcation and Post-Buckling behaviour 

The second derivative of P as to be studied for understanding whether the equilibrium is stable 
or not: 

θ θ θ
θ
Π

= ⋅ − ⋅ − ⋅
2

2 2 2 2
1 12 cos sin cosd k L k L PL

d
 ; (1.28)

the sign of the second derivative can be studied after dividing by k1L2 and introducing the equation 
(1.27) of the post-buckling branch: 

θ
θ
Π

> ⇔ − >
2

2
2 0 cos 1 0d

d
 ; (1.29)

which is not true for any value of θ within the range [0, π/2). Consequently, the second system is 
subjected to an unstable equilibrium bifurcation. 

Finally, post-buckling analysis points out the key aspects related to the stability or instability of 
the equilibrium path after bifurcation that can be even foreseen by the simple Euler theory was 
assumptions are not restrictive since perfect systems have small displacements. 

P (P=PE)
Bifurcation point

P

1

P/PE

θ 
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1.5 Imperfection sensitivities  
The previous chapter has been devoted to study the post-buckling behaviour after removing the 

small displacement hypothesis that is one of the two basic assumptions within the Euler problems. The 
second one, dealing with the idea that the bodies or structures are not affected by any imperfection (i.e. 
lack of verticality or accidental eccentricity), will be removed herein with the basic aim of understanding 
the behaviour of systems which are closer to the “real” ones which are usually affected by 
imperfections due to the producing or building process. 

Consequently, an initial eccentricity can be introduced for the load P in the first system 
considered above. The analytical expression of the Total Potential Energy Π for this system can be 
written as follows: 

( ) ( )21 1 cos cos
2

k P L eθ θ θ θΠ = ⋅ − ⋅ − + ⋅⎡ ⎤⎣ ⎦  , (1.30)

for taking into account the contribution of eccentricity e to the vertical displacement of the loaded tip. 
The first derivative of Π can be easily obtained and imposed equal to zero: 

[ ]sin cos 0d k P L e
d

θ θ θ
θ
Π

= ⋅ − ⋅ + ⋅ =  , (1.31)

whose solution in terms of P is reported below: 

sin cos
PL
k e L

θ
θ θ

=
+ ⋅

 . (1.32)

 
Figure 1.9: Discrete system #1: initial eccentricity as possible imperfection 

Since the Euler critical load PE=k/L, the above expression can be reported in terms of the EP P  
ratio as follows: 

sin cosE

P
P e L

θ
θ θ

=
+ ⋅

 . (1.33)

The above formula can even reproduce the case of “perfect” system studied in chapter 1.3; in 
fact, in the case of 0e L =  the equation (1.33) reduces to (1.21). In the general case, namely for 0e L > , 
equation (1.33) describes the family of curves represented in Figure 1.10 which are as far from the 
response of the perfect system as the value of the non-dimensional eccentricity e/L is great. Moreover, 
lateral displacements even occur for values of load P lesser than the theoretical PE, but initial 
imperfection does not affect the ultimate load of the system whose load path gets closer and closer to 
the post-buckling behaviour of the perfect system. 

θ  

L sinθ

PP

k

L

e
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Figure 1.10: Discrete system #1: the role of imperfection on equilibrium paths  

Although no further analytical developments will e proposed herein for the sake of brevity, it would be 
easy to demonstrate that the equilibrium for the system is stable in nature since its second derivative is 
strictly positive throughout the entire equilibrium path.  

Finally, the system #1 (and, by extension all those systems with stable post-buckling behaviour) 
are not imperfection sensitive in terms of ultimate load, but have only larger lateral displacement as a 
result of those imperfection. 

The second system can be now studied considering that it is affected by an imperfection whose 
effect can be simulated by an initial out-of-verticality angle θ0 (Figure 1.11). 

 
Figure 1.11: Discrete system #2: out-of-verticality as possible imperfection 

Starting from that deviated configuration, the expression of the Total Potential Energy can be defined 
for 0θ θ≥  and written as follows: 

( ) [ ] ( )2
1 0 0

1 sin sin cos cos
2

k L L PLθ θ θ θ θΠ = ⋅ − − ⋅ −  , (1.34)

θ0

L

k1

θ 
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and the corresponding equilibrium configuration of the system can be sought by solving the following 
equation: 

[ ]2
1 00 sin sin cos sin 0d k L PL

d
θ θ θ θ

θ
Π

= ⇒ ⋅ − − ⋅ =  . (1.35)

Simplifying the above equation and introducing the definition of Euler load PE stated by equation 
(1.26), the following relationship can be obtained for the equilibrium path: 

( )0sin sin
cos

sinE

P
P

θ θ
θ

θ
−

= ⋅  , (1.36)

and in the case of “ideal” system ( 0 0θ = ) equation (1.36) reduces to (1.27). Figure 1.12 plots that 
relationship as a dashed line; the continuous lines reproducing the behaviour of the system with 
imperfection are hugely affected by imperfections in terms of both lateral displacements in the 
ascending branch and ultimate load which is usually as smaller than PE as the imperfection amplitude 
θ0. 
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Figure 1.12: Discrete system #2: the role of imperfection on equilibrium paths  

Consequently, two achievements have been drawn by the above two systems that can be assumed 
as paradigms of two classes of problems: 

- in the first one, stable (and symmetric) behaviour occurs after bifurcation imperfection only 
affects the lateral flexibility of the system;  

- for the second one unstable bifurcation occurs and, when imperfections are taken into 
account, both lateral stiffness and ultimate load are hugely affected. 

Finally, the intimate relationship between post-buckling behaviour and imperfection sensitiveness 
will be emphasized in the next section as one of the key aspects of a more general theory. 

1.6 Koiter’s theory 
 

1.7 Applications 
 

1.7.1 Worked examples 
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1.7.2 Unworked examples 


