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3. Stability of  built-up members in compression 

3.1 Definitions 
Build-up members, made out by coupling two or more simple profiles for obtaining stronger and 

stiffer section are very common in steel structures, usually for realizing members which are usually 
under compression. Two of the most common arrangements for built-up members are represented in 
Figure 3.1. Although the discrete nature of the connections between the two members connected by 
lacings and/or battenings, the models that will e described in the following for analysing and checking 
built-up members are based on the assumption that the member is regular and smeared mechanical 
properties (such as, flexural stiffness) can be assumed throughout the member axis and utilized in 
calculations. Consequently, some regularity requirements are usually imposed in designing these 
members and can be listed below as a matter of principles: 

- the lacings or battenings consist of equal modules with parallel chords; 
- the minimum numbers of modules in a member is three. 

 
a) laced member   b) battened member 

Figure 3.1: Uniform built-up columns with lacings and battenings. 

The key models which can be utilized for the stability check of this kind of members will be 
discussed in the present chapter. Application of both the European and Italian Code of Standards will 
be also proposed in worked and unworked examples. 

3.2 Shear Flexibility of members and critical load 
While shear flexibility can usually be neglected in members with solid sections, built-up members 

are hugely affected by these parameters as a result of the axial deformation of lacings and out-of-plane 
flexural flexibility of the chord members. 

Consequently, the critical load of built-up members have to be evaluated taking into account the 
role of shear stiffness Sv whose influence has be already discussed in section 2.7 with reference to 
transverse sections of general shapes. In particular, the key achievement of that discussion is 
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represented by equation (2.58) which can e rewritten even assuming the symbols utilized within the 
previous chapter: 
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Based on the above equation, an equivalent value of the flexural slenderness can be easily 
introduced as often considered in various codes of standards: 

2

, 2cr V
eq

EAN π
λ

=  , (3.2)

which can be defined as follows: 
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Since imperfections play an even important role in both strength and stability checks of built-up 
members, a conventional eccentricity e0 is usually introduced for simulating their effect in amplifying 
the axial action NSd. For instance, EC3 provides the following value of eccentricity as a function of the 
member span length L: 

0 500
Le =  . (3.4)

 
Figure 3.2: Conventional eccentricity e0 accounting for member imperfections. 

Further detail above the EC3 procedure will be discussed in depth in one of the closing 
paragraph of the present chapter, purposely devoted to code provisions for built-up members. 
Nevertheless, it is worth emphasizing the role of shear flexibility on the value of eccentricity to be 
adopted in verifications; indeed, since second order effects are usually of concern, the following 
magnified value of eccentricity has to be considered to take into account its total value according to 
equation (2.20): 
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The expression of the magnification factor considered in the above equation is based on the 
definition given in (3.1) of critical load considering the role of shear flexibility 1/Sv. As a matter of 
principle, the above eccentricity of the axial force results in an external moment M which can be 
defined as follows: 
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introducing a further compression in one of the two connected members (is the case of plane built-up 
members is of interest) which can be estimated as follows: 
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where h0 is the distance between the centroids of the two chord members as already represented in 
Figure 3.1. 

The following two section point out the theoretical basis and the key code provisions for both 
braced and battened members. 

3.3 Braced members 
Braced members are made out of two chord connected by a bracing system with inclined lacings, 

in which each segment of longitudinal profile between two braced nodes can be regarded as an isolated 
beam-column, whose lateral slenderness is considerably reduced at least throughout the plane of 
lacings. An example of bidimensional braced (or laced) members are represented in Figure 3.1, but even 
3-D laced solutions can be adopted especially when longitudinal members are realized through L-
shaped (or similar) profiles. 

 
Figure 3.3: General laced members. 

3.3.1 Theoretical insights 
The theoretical discussion on laced members basically focuses on evaluating shear stiffness Sv for 

the various possible bracing schemes which are for instance represented in Figure 3.7. Since various 
possible arrangements can be considered when designing laced members, only one of these solutions 
will be described in details. 

In particular, the one represented in Figure 3.4 will be analysed, considering that its final shear 
flexibility stems out as a results of the two following strain contributions: 

- axial elongation in diagonal lacings; 
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- axial shortening of the horizontal connection. 
The first contribution δ1 can be easily quantified by considering that the length of the diagonal 

member is / sindL a φ=  and is stressed by an axial force / cosdN T φ= . The  
d

d d
d

NL L
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εΔ = ⋅ = ⋅  , (3.8)

which can be easily simplified as follows: 
1
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Figure 3.4: Shear stiffness of lacings in built-up members. 

Consequently, δ1 can be expressed as a function of the diagonal elongation Δ as follows: 
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The second contribution δ2, related to the transverse displacement is related to the axial 
deformation of the horizontal member under the compressive action T: 
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being EAb the axial stiffness of the horizontal connection. 
Finally, the shear deformation of the elementary cell of the considered laced member can be 

evaluated by considering both contributions:  
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Since, by definition, the shear stiffness is the force T resulting in an unit value of the shear 
deformation γ (namely, vT S γ= ⋅ ) the following definition can be determined for vS , suitably expressed 
in terms of shear flexibility1 vS : 
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Consequently, the critical load for these laced members can be expressed by introducing equation 
(3.12) in (3.1): 
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and an equivalent slenderness value can be defined according to equation (3.3): 
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An equivalent value of the βeq coefficient for the laced member (related to the flexural stiffness 
EI along the axis perpendicular to the lacings plane) can be even defined as follows: 
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and if one remembers the possible definitions of cos db Lφ =  and sin da Lφ =  the following 
simplification can be found for the above relationship: 
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3.3.2 Code provisions 
The key code provisions for laced members will be examined in the following with reference to 

both Italian and European Standards. 

3.3.2.1 Italian Code [12] provisions 

An extended version of the Omega Method, already introduced in section 2.8.1 for solid sections 
is provided by the Italian Code for addressing the issue of stability check in laced members. Curves c or 
d can be assumed in the cases of section flanges and webs thinner or thicker than 40 mm, respectively. 

Figure 3.5 shows the possible arrangement addressed by the code, which introduces for their 
equivalent stiffness λeq the following equation, substantially equivalent to the one derived within the 
previous section: 

3 3
2

2
0

10 d t
eq y

d tt

L LA
A AL L

λ λ
⎡ ⎤⋅

= + ⋅ +⎢ ⎥⋅ ⎣ ⎦
 . (3.18)

being A the area of the transverse section of the chord members, At the area of the horizontal 
members, and the other distances reported in the mentioned Figure 3.5. 

 
Figure 3.5: Laced members as considered in the Italian Code. 

The slenderness yλ  is referred to the built-up transverse section as a whole, around on of the two 
principal axes which does not cross all the single chord members. 
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Figure 3.6: General built-up section and main axes as considered in the Italian Code. 

For the schema b), c), d) and e) in Figure 3.6 the following simplified relationship can be assumed 
for the equivalent slenderness: 
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The stability check of these members is performed by considering a virtual shear force V defined 
as follows: 

100
NV ω

=  . (3.20)

where N is the axial force. The value of the coefficient ω can be derived as a function of λeq according 
to curve c or d as specified above. 

3.3.2.2 European Code [14] provisions 

The stability check, along with all the structural verification dealing with members and 
connections, have to be carried out by assuming an accidental eccentricity due to imperfections which 
can be defined according to equation (3.4). Consequently the design action in the single chord of a laced 
member whose total axial force is NSd can be derived according to the following equation which 
summarized the concept formulated in paragraph 3.3.1. 
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The value of the critical load Ncr has to be determined by neglecting the shear flexibility influence 
which is present explicitly at the denominator of equation (3.21). Consequently, the usual expression 
can be considered: 
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where the effective moment of inertia Ieff is defined for one of the two axes which does not cross all the 
connected chord sections:  

2
00.5eff fI A h= ⋅ ⋅  , (3.23)

being Af the area of the single chord section and h0 the distance between their centroids. 
A virtual shear force VS has to be also considered for the strength check of the connections and 

can be determined as a function of the above eccentricity e0: 
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Moreover, the diagonal members have to be checked considering the following values of axial 
force Nd:  
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The values of shear stiffness Sv, needed for defining the total eccentricity and its effects in terms 
of axial force in members Nf,Sd and the other above mentioned actions, can be taken according to 
Figure 3.7. 

 
Figure 3.7: Shear stiffness of lacings in built-up members. 

Finally, some basic rules are provided in EC3 for design details of laced members as summarized 
below: 

- when the single lacing systems on opposite faces of a built-up member with two parallel laced 
planes are mutually opposed in direction as shown in Figure 3.8, the resulting torsional 
effects in the member should be taken into account; 

- Tie panels should be provided at the ends of lacing systems, at points where the lacing is 
interrupted and at joints with other members. 

 
Figure 3.8: Practical design rule for built-up member with two parallel laced planes. 

3.3.3 Worked example 
Let us consider the laced member in Figure 3.9 stressed in compression under an axial force 

whose design value is NSd=3500 kN. The member is 10 m high and simply hinge at its ends. Chord 
members are realized through IPE 450 profiles while diagonals consists in steel plates with 60x12 mm2 
rectangular section both made out of grade S235 steel. 
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IPE 450 data: 
- depth  h 450 mm; 
- width  b 190 mm; 
- flange thickness tf 14.6 mm; 
- web thickness  tw 9.4 mm; 
- radius r 21 mm; 
- area Af 9880 mm2; 
- Moment of inertia with respect to the strong axis Iy 33740 104 mm4; 
- Moment of inertia with respect to the weak axis Iz 1676 104 mm4. 
Other geometrical properties are reported in Figure 3.9. 

 

 
Figure 3.9: Laced member. 

3.3.3.1.1 Stability check according to the Italian Code provisions. 
 
 

3.3.3.1.2 Stability check according to EC3 provisions. 
The same exercise can be also faced within the framework of the EC3 provisions which can be 

applied following the procedures described within the previous paragraphs. 
Step #1: classifying the transverse section: 
Since the adopted steel grade is fy=235 MPa, the value ε=1 can be assumed for the parameter 

mentioned in Table 2.3 and Table 2.4. The following values of the length-to-thickness ratios can be 
evaluated for flange and web: 

- flange  c/tf=(190/2)/14.6=6.5≤10 Class 1; 
- web  d/tw=(450-2·14.6-2·21)/0.4=40.3≤42 Class 1 
Finally, the profile IPE270B made out of steel S235 is in class 3 if loaded in compression. 
Step #2: evaluating the design actions: 
The eccentricity e0 which has to be considered for taking into account the possible imperfection 

effects is defined as follows according to equation (3.2): 

0 20 
500
Le mm= =  . 
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The effective value of the moment of inertia of the built-up section Ieff can be also calculated 
according to equation (3.23): 

2 2 6 4
00.5 0.5 600 9880 1778.4 10  eff fI h A mm= ⋅ ⋅ = ⋅ ⋅ = ⋅  . 

and the shear stiffness can be assumed on the basis of the formula reported in Figure 3.7 with reference 
to the scheme under consideration: 
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The elastic critical load Ncr can be then easily evaluated: 
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in which the overall effective length L=10000 mm has been considered since the calculation is aimed at 
deriving the total effect of the eccentricity e0 on the beam-column as a whole. Indeed, the moment MS 
induced by the eccentricity e0 can be evaluated as follows: 
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Taking into account the magnification effect due to second order displacements. 
Finally, the actions on the various members can be easily derived by means of the relationships 

reported at the end of the previous paragraph: 
- the axial force on the longitudinal chord member: 
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- the shear force VS: 
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- the axial force Nd in the diagonal members: 
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Step #3: performing the stability check of the chord members: 
The reduction factor χ due to the slenderness of the member has to be calculated by looking 

after the possible instability in both the principal direction y and z, as represented in Figure 3.10.  
Step #3.1: calculation of χy for instability in the z direction: 
As far as the possible instability in the plane orthogonal to the y-axis (namely, buckling in z 

direction) is considered, the vale of the effective length coincides with the overall span length of the 
member, since no lacings restraints buckling in the considered direction, lying the diagonal members in 
a plane parallel to the y-axis. Consequently L0,y=10000 mm and the moment of inertia of the single 
longitudinal chord member is Iy: 
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Figure 3.10: Transverse section of the built-up member. 

The non-dimensional slenderness can be derived as a function of the elastic critical load Ncr,y as 
follows: 
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According to Figure 2.15 the profile follows the curve a and, consequently, the following value of 
the reduction factor χy can be evaluated: 
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Step #3.2: calculation of χz for instability in the y direction: 
On the contrary, as far as the possible instability in the plane orthogonal to the z-axis (namely, 

buckling in y direction) is considered, the value of the effective length coincides with the diagonal 
spacing, since buckling in y direction is forced by lacings to develop only between two adjacent nodes. 
Consequently L0,z=1000 mm and the moment of inertia of the single longitudinal chord member is Iz, 
have to be determined according to  
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The non-dimensional slenderness can be derived as a function of the elastic critical load Ncr,z as 
follows: 
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According to Figure 2.15 the profile follows the curve b and, consequently, the following value of 
the reduction factor χy can be evaluated: 
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Step #3.3: calculating the axial bearing capacity : 
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Since χy<χz, the strong axis of the built-up section is the z-axis, which is the weak one for the 
single member. This observation points out the huge effect of lacings in changing the behaviour of the 
single member to obtain a built-up one. Finally, the axial load bearing capacity can e evaluated as 
follows: 

3
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and the built-up member complies with the stability check according to Ec3 provisions: 
, , , ,1883.4 1986.1 f y Sd f y RdN kN N kN= < =  . 

3.4 Battened members 
Battened members are widely utilized as a technological solution for realizing beam-columns in 

industrial buildings. Some theoretical insights are given in the following about the mechanical 
behaviour of this kind of members, the procedure for stability check and the related code provisions. 

3.4.1 Theoretical insights 
Due to the significant flexural stiffness of battenings and the related connections with the chord 

members, the nodes between the longitudinal profiles and the horizontal battenings is usually assumed 
as completely fixed, rather than hinges as usually considered for laced members. 

Consequently, the lateral shear flexibility of this kind of members can be determined considering 
the following three contributions: 

- bending in longitudinal members; 
- bending in battening; 
- shear strains in battenings. 
Without going in depth about the mathematical demonstration, the following formula can be 

obtained for the shear flexibility 1 vS : 
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and the following value of the elastic critical load ,cr VN  can be defined according to equation (3.1): 
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or, equivalently, the following equivalent expression of the β coefficient for the battened member can e 
introduced: 
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Although, the overall shear flexibility of the member can be determined by summing the three 
above contributions, the values of both flexural and shear stiffness of the battenings are usually 
significantly greater than out-of-plane flexural stiffness of the chord member. Consequently a simpler 
expression can be assumed for the equivalent coefficient βeq: 
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 , 

Finally, strength verification of connections (either bolted or welded) between battenings and 
chord members has to be carried out by introducing the shar force VS as a function of the eccentricity 
e0; the effect of shear force VS on the various members of the built-up beam-column can be taken into 
account by considering the free-body diagram and the resulting bending and shear stresses represented 
in Figure 3.11. 
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Figure 3.11: Moments and forces in an end panel of a battened built-up member. 

Specific code provisions about the battened members will be reported and commented in the 
following paragraph. 

3.4.2 Code provisions 
The key code provisions for battened members will be examined in the following with reference 

to both Italian and European Standards. 

3.4.2.1 Italian Code [12] provisions 

An extended version of the Omega Method, already introduced in section 2.8.1 for solid sections 
and extended to laced ones in section 3.3.2.1, is provided by the Italian Code for addressing the issue of 
stability check in battened members. Curves c or d can be assumed in the cases of section flanges and 
webs thinner or thicker than 40 mm, respectively. 

Provided that spacing between the chord profiles is parameter of concern for the mechanical 
behaviour of the built-up members, two classes of members can be recognised: 

- closely spaced members; 
- spaced members. 
No specific design requirements are provided for the first ones, which can be checked against 

strength as well as stability as provided for simple members. 
On the contrary, for spaced members the following expression of the equivalent slenderness in 

the direction(s) of concern for battenings is given: 
2 2

1eq yλ λ λ= +  . (3.26)

where λ1 is the maximum slenderness of the single chord considering an effective length equal to the 
battening spacing. 
Further design requirements are imposed on battened built-up members: 

- battening should be realized by rectangular plates whose aspect ratio is not smaller than 2; 
- the maximum spacing of battenings has to be no wider than 50 ρmin, the minimum gyration 

radius for the single member. This limit is even stricter (40 ρmin) for steel of grade S275 and 
S355; 

- shear force to be considered for local checks has to be evaluated as follows: 

100S
NV ω
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3.4.2.2 European Code [14] provisions 

Since battenings are usually assumed infinitely stiff with respect to the chord sections, EC3 
provided a lower bound for their moment of inertia Ib with respect to the one of the chord member 
and other geometrical parameters: 

0
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a being the battening spacing. 
The compressive force Nf,Sd acting on the single chord member can be determined as follows for 

taking into account the effect of eccentricity e0 due to imperfections: 
0

, 0.5
2

S fSd
f Sd

eff

M h ANN
I
⋅ ⋅

= + ⋅  . (3.29)

where the moment Ms is defined as follows: 
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and the effective moment of inertia can be estimated as follows: 
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The parameter μ is basically defined as a function of slenderness λ: 
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where the mentioned slenderness is defined as follows  
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and 0 10.5 fi I A= ⋅  with I1 equal to Ieff in equation (3.31) assuming μ=1. 
The elastic critical load Ncr in equation (3.30) can be evaluated according to the following 

expression: 
2

2
eff

cr

EI
N

L
π

=  , (3.34)

and the shear stiffness Sv can be evaluated as follows if the limitation (3.28) is respected: 
2

2

2 f
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π

=  . (3.35)

On the contrary, in the general case, the shear stiffness Sv has to be evaluated as follows: 
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 . 
(3.36)

The shear force to e considered in local verifications according to the equilibrium conditions 
represented in Figure 3.11 can be evaluated as already described for laced members according to 
equation (3.23). 

Finally, EC3 as already mentioned for the Italian code, classifies the battened members on the 
basis of the distance between the longitudinal chord members. In particular, for closely spaced 
members, the above provision does not apply and the general procedure given for the usual members 
described in section 2 can be applied. 

Examples of closely spaced battened members are represented in Figure 3.12 and considering 
different types of longitudinal profiles. 
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Figure 3.12: Closely spaced built-up members. 

 
Figure 3.13: So-called star-battened members. 

With reference to the various arrangements represented in the two last figures the built-up 
member can e classified as “closely spaced” if the limitations in Table 3.1 apply. 

Table 3.1: Maximum spacings for interconnections in closely spaced built-up or star battened angle members [14]. 

Type of built-up member Maximum spacing between 
interconnections 

Members according to Figure 3.12 connected by bolts or welds 15 imin 
Members according to Figure 3.13 connected by pair of battens 70 imin 

 
 
 
 
 

3.4.3 Worked examples 
 

3.5 Unworked examples 
 


