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4. Lateral-Torsional Buckling of  Members in Bending 

This chapter is devoted lateral-torsional buckling of members in bending. A first paragraph is 
devoted to a phenomenological description of the phenomenon. The second one collects a series of 
completely theoretical models derived for elastic beams of diverse cross section. Finally, a 
comprehensive discussion of the main code provisions is reported; both the Italian and the European 
codes are analyzed and applied. 

4.1 Definitions and phenomenological description 
Stability within the Euler definition has been already exposed in chapter 2 with reference to the 

case of members in compression. Under the two basic hypotheses of i) small displacements and ii) no 
imperfection, the behaviour of members in compression appeared as bifurcation problem whose 
solution is the trivial one under low level of axial load, switching to an adjacent one as the axial force 
approaches a particular critical value. 

The same behaviour can be observed for members in bending; even in these cases, a critical value 
of the transverse load results in a bifurcation phenomenon: starting from the plane configuration 
characterizing the response of members in bending, an adjacent equilibrium configuration is assumed 
under that critical value. The possible adjacent configuration is usually described by out-of-plane 
displacements throughout the beam axis and a twisting angle (Figure 4.1). 

 
Figure 4.1: Lateral-torsional buckling for a cantilever beam. 

As well as moments of inertia play a relevant role in affecting the buckling phenomenon under 
axial forces, other geometric properties of the transverse section result in getting the member more or 
less susceptible of lateral-torsional buckling. Lateral-torsional buckling of members in bending is also 
affected by load condition, being the phenomenon sensitive of the point of application of the 
transverse force throughout the section. 

All these aspects of the lateral-torsional buckling phenomenon will be analyzed in the following. 
First of all a rather comprehensive explanation of the elastic theory will be given with some insights 
about the solution methods which can be utilized for obtaining approximate solution of the problem, 
being closed-form ones only available in few simple cases. Finally, both Italian Code and Eurocode 3 
provisions for lateral-torsional buckling will be examined, commented and applied in some worked 
examples. 

4.2 Theoretical insights 
The theoretical study of the mentioned phenomenon starts from members with rectangular 

section, considering, in particular, the case of deep beams in which the two principal moments of 
inertia are significantly different; the case of more general sections will be also addressed with particular 
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focus on the I-shaped beams which are rather common in steel structures. The way in which the point 
of application of loads affects the behaviour of flexural members in terms of lateral-torsional buckling 
occurrence will be also examined; in particular, the difference in behaviour deriving by applying the 
transverse load either above, beneath or directly in the section centroid, will be also addressed. 
Influence of initial imperfection is also considered with the aim of understanding the behaviour of the 
so-called industrial member, with respect to the ideal case of perfectly straight ideal members. 

4.2.1 Lateral buckling of beams with rectangular section 
Let us consider a beam of rectangular section whose principal radii of gyration are significantly 

different; in particular, the shorter one is referred to the out-of-plane bending as shown in Figure 4.2: 

 
Figure 4.2: Adjacent lateral-torsional buckled configuration described by the twisting angle ϕ 

The twisting rotation j which can possibly arise during the loading process results in a non 
perpendicular condition between the bending moment vector M (orthogonal to the bending plane) and 
the y-axis of the transverse section; consequently, the external bending moment is characterized by a 
non-zero component (approximately equal to Mϕ) along the y-axis and, hence, an out-of-plane 
bending. If Iy is the moment of inertia with respect to the y-axis, the following Navier relationship can 
be stated between the bending moment and the resulting out-of-plane curvature: 

⋅ = − ⋅
2

2y
d uEI M
dz

ϕ  (4.1)

where u=u(z) is the displacement component in x direction of the centroid G of the section at abscissa 
z.  

 
Figure 4.3: Bending moment in the two directions – Vertical plane 

Lateral displacements possibly arising in the beam have also an influence on its torsional behaviour. Let 
us be GJt the torsional stiffness of the beam and consider a segmental part of the beam whose length is 
dz subjected to a bending moment M and a torsional one Mt. 

According to the symbols introduced in Figure 4.3 the equilibrium equation to rotation in 
longitudinal direction can be easily written as follows: 

( ) 0t t tM M dM M dε− + + − ⋅ =  (4.2)
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Figure 4.4: Relationship between torque and bending moment – Horizontal view 

 
On the contrary, under the kinematical point of view, a simple relationship can be stated between 

the element length dz (which can be approximated by the arc of length ds) and the radius of curvature 
ρu of the beam axis in the horizontal plane: 

= ≈ ⋅
2

2
u

dz d ud dz
dz

ε
ρ

 (4.3)

The following equation can be obtained by substituting the (4.3) in (4.2) and expressing all 
quantities in terms of derivatives: 

2

2 0tdM d uM
dz dz

− ⋅ =  , (4.4)

which, introducing equation (4.1) and ex pressing the torque Mt in terms of the unit angle of torsion 
according to the De Saint-Venant theory, leads to the following relationship between the twist angle 
ϕ(z) and the corresponding bending moment M(z): 

( )⎡ ⎤⎡ ⎤ ⎣ ⎦+ ⋅ =⎢ ⎥
⎣ ⎦

2

0t
y

M zd dGJ
dz dz EI

ϕ ϕ  . (4.5)

In the overwhelmingly common case of uniform transverse section, the above formula can be 
transformed in the following one, which is a second-order differential equation: 

( )⎡ ⎤⎣ ⎦+ ⋅ =
⋅

22

2 0
t y

M zd
GJ EIdz

ϕ ϕ  .  (4.6)

The above equation is the well-known PRANDTL-MICHELL equation, who derived it in the nineteenth 
century. 

4.2.2 Solution of some significant cases. 
Equation (4.6) can be solved following different approaches, depending also by the transverse 

load applied throughout the beam length and the resulting bending moment function M(z).  

4.2.2.1 1st Case: Simply-supported beam under uniform bending moment M(z)=M0. 

In this case the equation (4.6) has constant coefficients and, consequently, an easy closed-form 
solution can be found following the usual analytical methods for linear differential equations: 
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+ ⋅ =
⋅

22
0

2 0
t y

Md
GJ EIdz

ϕ ϕ  .  (4.7)

According to the mentioned end restraint conditions the general function describing the twisting 
rotation ϕ(z) can be assumed in the following sinusoidal form: 

0( ) sin zz a
L
πϕ ⎛ ⎞= ⋅ ⎜ ⎟

⎝ ⎠
 ,  (4.8)

which can be properly regarded as the first term of the Fourier series of the real (and unknown) 
function ϕ(z) (cosine terms are null as a result of the odd nature of the given function). Since the origin 
of the axes is placed at one of the two ends and, consequently, [ ]0,z L∈ , the equation comply with the 
restraint conditions in the case of simply-supported beams with rotational fixities at both ends. 

Substituting equation (4.7) in (4.6), the following relationship can be obtained: 
⎡ ⎤ ⎛ ⎞⎛ ⎞ − ⋅ ⋅ =⎢ ⎥⎜ ⎟ ⎜ ⎟⋅⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

2 2
0

0 sin 0
t y

M za
L GJ EI L

ππ  , (4.9)

and its left member vanishes for the non-trivial configuration (namely, if ≈0 0a ) if and only if the first 
factor does; consequently, the following critical value M0,cr for the bending moment can be evacuate: 

0,cr t yM GJ EI
L
π

= ⋅ ⋅  .  (4.10)

4.2.2.2 2nd Case: Simply supported beam under uniformly distributed load. 

In this case, assuming a reference system centred in the mid-span point, the bending moment can 
be easily expressed as follows: 

( ) ( )
2

21
8

qLM ζ ζ= ⋅ −  ,  (4.11)

being [ ]1,1ζ ∈ −  and the equation (4.6) has variable coefficients. Consequently, no-closed form 
solutions to be sought by analytical procedures are available and an alternative approximate method is 
needed. In particular, the Undetermined Coefficient Method can be utilized by introducing a power-
series approximation of the unknown function considering separately even and odd exponents within 
the two terms ϕ0 e ϕ1 reflecting the nature of its component functions. A certain (even) number n of 
terms can be chosen for the power series and the expression of  ϕ(z) can be placed in the following 
form: 

( ) ( ) ( ) +

= = =

= + = = +∑ ∑ ∑
/2 /2

2 2 1
0 1

0 0 0

n n n
i j j

i j j
i j j

A A Aϕ ζ ϕ ζ ϕ ζ ζ ζ ζ  ,  (4.12)

In the current case the function must be even in nature due to the structural symmetry and, 
hence, only the powers with even exponent can be considered: 

( ) ( )
=

= =∑
/2

2
0

0

n
j

j
j

Aϕ ζ ϕ ζ ζ  .  (4.13)

The non-dimensional abscissa ζ can be easily introduced in terms as a function of the 
dimensional one z as follows: 

/ 2
/ 2

z L
L

ζ −
=    and   

2
Ldz dζ= ⋅ .  (4.14)

and the equation (4.6) can be written as follows: 

( ) ( )ϕ
+ − ζ ⋅ϕ =

⋅ζ

232 22
2

t y

qL 16d 1 0
GJ EId

 ,  (4.15)

And introducing the following definition, 
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( )23
2

t y

qL 16
k

GJ EI
=

⋅
 ,  (4.16)

results in the final form reported below: 

( )
2 22 2

2
d k 1 0
d
ϕ
+ ⋅ − ζ ⋅ϕ =

ζ
 ,  (4.17)

Introducing equation (4.13) in (4.17), the maximum exponent of the various terms in ζ is n+4. 
Collecting the terms corresponding characterized by the same power to the ζ variable the following set 
of linear equation can be written in terms of the constants utilized for defining the above power series. 
In particular, a homogeneous set of n/2+1 equations with the unknown A2j (j=0…n/2) reported below 
(in the considered case n=20) can be obtained: 
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. (4.18)

 
By the above set of n/2 linear independent equations, the unknowns A2j can be determined as a 

function of A0, and can be substituted in equation (4.19) (in which ζ has been replaced by z) with the 
aim of obtaining ϕ: 

 

( )
2 2 2 4 4 4 2 6 4 6 6 6 4 8 20 20

0
7 131 ...

2 6 24 30 180 720 840 2432902008176640000
k k k k k k k kA ζ ζ ζ ζ ζ ζ ζ ζφ ζ

⎛ ⎞
= ⋅ − + + − − − + + +⎜ ⎟

⎝ ⎠
. (4.19)

 
A suitable boundary condition has to be imposed to this expression of ϕ(ζ) considering that the 

twisting rotation vanishes at ζ= 1, due to the restraining effect of the rotational fixities: 
( )1 0φ =  ;  (4.20)

the above condition is always true for the trivial solution throughout all the beam axis and can be 
imposed to the solution (4.19) describing the laterally buckled configuration. In this second case, a 
critical value kcr of the constant k can be determined obtaining the following approximate solution: 

 

( )23 16
1,7697

cr
cr

t y

q L
k

GJ EI
= =

⋅
 ,  (4.21)

 
from which the corresponding critical value qcr of the uniformly distributed load q can be easily 
determined: 
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3 3
16 28,3152cr

cr t y t y
kq GJ EI GJ EI

L L
⋅

= ⋅ ⋅ = ⋅ ⋅  .  (4.22)

This solution has been assuming an approximated expression of the function ϕ(z) involving the 
first 11 power terms of even exponent reported in equation (4.13). A wider sensitivity analysis has been 
carried out about the level of approximation which can be achieved by the numerical solution involving 
up to 20 power terms. Figure 4.5 shows the convergence of the numerical solution toward a stable 
value kcr confirming the good approximation of the solution reported in equation (4.22). 
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Figure 4.5: Value of kcr as a function of the order n of approximation of the numerical solution. 

The same figure shows that the same convergence process is generally non monotonic as the 
order of the approximating solution varies from 3 to 20. 

4.2.2.3 3rd Case: Simply-supported beam under a point load Q at mid-span. 

In this case the analytical expression of the bending moment, assuming that the non dimensional 
abscissa starts form the mid-span point, can be placed in the following form: 

( ) ( )= ⋅ −1
4

QLM ζ ζ  ,  (4.23)

with [ ]1,1−∈ζ  and equation (4.6) has once more variable coefficients. The solution is sought following 
the same numerical approach utilized above assuming for per ϕ(ζ) a similar polynomial expression 
reported in (4.13). Following a similar procedure, the critical value Qcr of the concentrated load Q can 
be derived as expressed below: 

2 2
8 11,8041cr

cr t y t y
k

Q GJ EI GJ EI
L L
⋅

= ⋅ ⋅ = ⋅ ⋅  .  (4.24)

 

4.2.2.4 4th Case: Cantilever beam under uniform bending moment M(z)=M0. 

In this case, equation (4.6) has constant coefficient  
22

0
2

t y

Md 0
GJ EIdz

ϕ
+ ⋅ϕ =

⋅
 ,  (4.25)

 
and, hence, a sinusoidal expression can be assumed for the general solution according to the imposed 
boundary conditions (rotational fixity at z=0): 

 

1
z( z ) sin

2L
π⎛ ⎞ϕ = ϕ ⋅ ⎜ ⎟

⎝ ⎠
 ,  (4.26)

 
which can be, as usual, intended as the first term of the Fourier series of the unknown solution ϕ(z) 
(cosine coefficients are once more zero due to the particular boundary condition). Since the origin of 
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the reference system is at the fixed end of the beam. Introducing equation (4.7) in (4.6) the following 
relationship can be easily obtained: 

 
2 2

0
0 sin 0

2 2t y

M za
L GJ EI L

ππ⎡ ⎤ ⎛ ⎞⎛ ⎞ − ⋅ ⋅ =⎢ ⎥⎜ ⎟ ⎜ ⎟⋅⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 ,  (4.27)

 
which is true as a0=0, or, in the non-trivial case, as the first factor in the square parentheses is zero and, 
consequently, the “critical” value M0,cr of the bending moment M can be derived: 

0, 2cr t yM GJ EI
L
π

= ⋅ ⋅  ,  (4.28)

4.2.2.5 5th Case: Cantilever under uniformly distributed load. 

Assuming the origin f the z axis at the free end of the cantilever, the function describing the 
bending moment can be expressed as follows: 

( ) ( ) 2
2

2

2
qLMz

2
qzM ζ⋅−=ζ⇒⋅−=  ,  (4.29)

in which the non dimensional abscissa Lz=ζ  has been conveniently introduced. The equation (4.6), 
can be, hence, written in the following form: 

( )
( )

232
4

2

2
1 0

t y

qLd
GJ EId

φ ζ φ
ζ

+ − ⋅ =
⋅

 ,  (4.30)

or, equivalently, 

( )
2

42
2 1 0d k

d
φ ζ φ
ζ

+ ⋅ − ⋅ =  ,  (4.31)

under the hypothesis that: 

( )23
2

2

t y

qL
k

GJ EI
=

⋅
.  (4.32)

Also in this case, a power series can be introduced for approximating the unknown solution; 
based on the nature of the problem and the choice of the relevant variables, the following 
approximation is introduced: 

( ) ( )
/2

2
0

0

n
j

j
j

Aφ ζ φ ζ ζ
=

= =∑  .  (4.33)

Introducing (4.26) in (4.23), collecting the coefficients of the similar terms and imposing that a 
null product can be obtained if one of its factors is zero, the following homogeneous set of linear 
equation can be written (in the case of n=28): 
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(4.34)

The variables A2j can be derived as a function of A0 and introducing them in equation (4.26) the 
following expression of the twisting rotation ϕ(ζ) can be obtained: 

( )
2 6 4 12 6 18 8 24

0 1
30 3960 1211760 668891520

k k k kA ζ ζ ζ ζφ ζ
⎛ ⎞

= ⋅ − + − +⎜ ⎟
⎝ ⎠

.  (4.35)

As a boundary condition, the first derivative of ϕ(ζ) at the free end of the beam (ζ=1) have to be 
forced to zero. Consequently, a critical value kcr of k can be deduced in the non trivial configuration, 
obtaining the following relationship: 

( )23 2
6,4278

cr
cr

t y

q L
k

GJ EI
= =

⋅
 ,  (4.36)

and 
 

3 3
2 12,8557cr

cr t y t y
kq GJ EI GJ EI

L L
⋅

= ⋅ ⋅ = ⋅ ⋅  ,  (4.37)

 
or, in terms of global load: 

 

2
12,8557

cr cr t yQ q L GJ EI
L

= ⋅ = ⋅ ⋅  ,  (4.38)

 
or bending moment 

2 6,4277
2

cr
cr t y

q LM GJ EI
L

⋅
= = ⋅ ⋅  ,  (4.39)

 

4.2.3 Influence of the transverse section shape: symmetric I-shaped profiles 

Let us consider the symmetric I-shaped section whose depth is h and let ϕ(z) be the twisting 
angle around the z-axis. The lateral displacement u (in x-direction) of the above flange can be related to 
the local value of the twisting angle as follows: 
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( ) ( )
2
hu z zφ=  .  (4.40)

 
Figure 4.6: Symmetric I-shaped section. 

Consequently, a curvature d2u/dz2 arises throughout the axis of the flange and the corresponding 
bending moment in y-direction can be related to that curvature according to the usual linear 
relationship involving the relevant flexural stiffness: 

2 1,
2

,

y

y f

Md u
EIdz

=  ; (4.41)

By equilibrium, the shear force V1,y orthogonal to the y-direction corresponds to the above bending 
moment M1,y: 

1,
1,

y
y

dM
V

dz
= −   (4.42)

and, hence, a relationship between this shear force and the function describing the twisting angle ϕ can 
be easily stated considering equations (4.8) and (4.9): 

3

1, , 3y y f
dV EI h
dz
φ

= − ⋅ ⋅  . (4.43)

Since the force V1,y acts on the above flange in the direction parallel to its axis and, for the same 
reasons, an opposite one is applied on the bottom flange, a secondary torque arises on the transverse 
section, whose sign is opposite to the one covered by the De Saint-Venant theory and mentioned 
above for the rectangular section: 

3
2

1, 1, , 3
1
2t y y f

dM V h EI h
dz
φ

= ⋅ = − ⋅ ⋅ ⋅  . (4.44)

Consequently, the relationship between the torque and the twisting rotation ϕ can be obtained by 
summing the De Saint-Venant contribution introduced in equation (4.5) and the further one described 
by equation (4.44): 

3
2

, 3
1
2t y f t

d dM EI h GJ
dzdz

φ φ
= − ⋅ ⋅ ⋅ + ⋅  . (4.45)

Since the torque Mt stems out by the laterally buckle configuration and is consequently related to 
the bending moment, the following relationship reported in equation (4.4), can be stated between the 
two couples: 

2

2 0tdM d uM
dz dz

− ⋅ =  , (4.46)

x G

y

G
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and, introducing equation (4.1) and (4.12), the following fourth-order differential equation in terms of ϕ 
can be derived: 

[ ]24 2
2

, 4 2
( )1 0

2 y f t
y

M zd dEI h GJ
EIdz dz

φ φ φ− ⋅ ⋅ ⋅ + ⋅ + ⋅ =  , (4.47)

and, finally, 
[ ]24 2, 2

4 2
( )1 0

2
y f

t t y

EI M zd dh
GJ GJ EIdz dz

φ φ φ− ⋅ ⋅ ⋅ + + ⋅ =
⋅

 . (4.48)

In a more general sense, the warping moment of inertia (or sectorial moment of inertia) Iω can be 
introduced, being in the case of symmetric I-shaped section: 

22
,

,2
2 2

y f
y f

EI hhEI EIω
⎛ ⎞= ⋅ =⎜ ⎟
⎝ ⎠

 , (4.49)

and the general form of equation (4.45): 
[ ]24 2

4 2
( )

0t
y

M zd dEI GJ
EIdz dz

ω
φ φ φ− ⋅ + ⋅ + ⋅ =  . (4.50)

4.2.4 Solution of some significant cases. 

4.2.4.1 1st Case: Simply-supported beam in uniform bending moment M(z)=M0. 

Equation (4.45) has generally variable coefficients due to the fact the bending moment ( )zM  is 
related to the abscissa z. Far from being a practical representative case, uniform bending moment is a 
cas d’école in which the coefficient of the above equation are constant. Consequently, if ( ) 0MzM =  
equation (4.45) takes the following expression 

24 2
0

4 2 0
t t y

EI Md d
GJ GJ EIdz dz

ω φ φ φ− ⋅ + + ⋅ =
⋅

 , (4.51)

and, as a sinusoidal expression is assumed for (the first terms of the Fourier series) the unknown 
function ϕ(z) 

( ) 1 sin
zz

L
π

φ φ= ⋅  , (4.52)

equation (4.46) can be transformed as follows: 
4 2 2

0
1 sin 0

t t y

EI M z
GJ L L GJ EI L

ω ππ π φ
⎡ ⎤⎛ ⎞ ⎛ ⎞− ⋅ − + ⋅ ⋅ =⎢ ⎥⎜ ⎟ ⎜ ⎟ ⋅⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 . (4.53)

A critical value M0,cr of the uniform bending moment M0 resulting n lateral-torsional buckling of 
the considered beam can be defined as follows: 

2

0, 1cr t y
t

EI
M GJ EI

L GJ L
ωπ π⎛ ⎞= ⋅ ⋅ ⋅ + ⋅⎜ ⎟

⎝ ⎠
 . (4.54)

It is straightforward to observe that equation (4.54) reduces to (4.10) for rectangular sections in 
which 2 0tEI GJ Lω ⋅ → ; indeed, the latter equation provides a lower bound for the critical bending 
moment resulting, and equation (4.54) points out the stabilizing contribution of the flanges (and more 
generally of the terms 2

tEI GJ Lω ⋅ ) to lateral-torsional buckling occurrence. 
In the case of a cantilever beam, equation (4.52) has to be replaced by the following expression 

which take accounts of the diverse restraint condition, forcing twisting rotation to vanish at the fixed 
end for z=0: 

( ) 1 sin
2

zz
L
π

φ φ= ⋅  . (4.55)

The above equation, introduced in (4.50), and transformed as reported above with reference to a 
simply-supported beam, results in the following expression of the critical bending moment: 



STABILITY OF STRUCTURES 

Dr. Enzo MARTINELLI 69 Draft Version 13/01/2008 

2

0,
11

2 4cr t y
t

EI
M GJ EI

L GJ L
ωπ π⎛ ⎞= ⋅ ⋅ ⋅ + ⋅ ⋅⎜ ⎟

⎝ ⎠
 , (4.56)

even reducing to the corresponding equation (4.26) in the case of rectangular section, namely with 
2 0tEI GJ Lω ⋅ → . 

Finally, comparing equations (4.54) and (4.56) the role of the different restraint condition on the 
two mentioned beams with respect to the reference case reproduced by equations (4.10) and (4.26) 
determined for the cases of rectangular section for simply-supported and cantilever beams, respectively. 

4.2.4.2 2nd Case: Trave semplicemente appoggiata con carico uniformemente distribuito q. 

The equation (4.50) can be transformed in the corresponding non-dimensional shape in terms of 
the non dimensional abscissa defined above:  

( )
4 2 22 2

4 2 1 0d dC k
d d
φ φ ζ φ

ζ ζ
− ⋅ + + − ⋅ =  ,  (4.57)

where 

( )23
2

16

t y

qL
k

GJ EI
=

⋅
                        24

t

EI
C

GJ L
ω= ⋅
⋅

 . (4.58)

….. 

4.2.5 Influence of the position of the point load on the transverse section 
Within the previous paragraph, the loads are intended to be applied on the centroid G of the 

transverse section. Nevertheless, load can be also applied in other points of the section, above or 
beneath the centroid G. Figure 4.7 shows the case of a load applied in a point C, on the y-axis, at the 
distance d* from the centroid G (assuming positive distances according to the direction of the y-axis). 

 
Figure 4.7: Symmetric I-shaped section with load applied in a general point C 

 
The eccentricity d* results in a variation dMt* of the of the global torque acting on the transverse 

section which has to be added to the twisting moment expressed in equation (4.2): 
* *tdM qdz dφ= − ⋅ . (4.59)

G
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qdz
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d*C
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Coming back on the transformations leading form the equilibrium equation (4.2) to the final 
differential ones reported in equation (4.6) or (4.15) the effect induced by this moment variation can be 
easily understood. 

In particular, considering equation (4.50), the following second-order differential equation can be 
derived taking account of the eccentricity d* between G and C: 

 
[ ]24 2

4 2
( ) *

0
t t y t

M zEI qdd d
GJ GJ EI GJdz dz

ω φ φ φ
⎡ ⎤
⎢ ⎥− ⋅ + + − ⋅ =

⋅⎢ ⎥⎣ ⎦
 . (4.60)

4.2.5.1 Simply supported beam under an uniformly distributed load q. 

As described in section 4.2.2.2, the expression of the bending moment in terms of a non-
dimensional abscissa ζ, whose origin is at mid-span of the beam, can be expressed as follows: 

( ) ( )
2

21
8

qLM ζ ζ= ⋅ −  ,  (4.61)

being [ ]1,1−∈ζ  and the equation (4.6) has variable coefficients. The simple case of rectangular section 
is considered ( 2 0tEI GJ Lω ⋅ → ) with the aim of pointing out the role of the distance d*; in that case 
equation (4.6) takes the following form: 

[ ]22

2
( ) *

0
t y t

M z qdd
GJ EI GJdz

φ φ
⎡ ⎤
⎢ ⎥+ − ⋅ =

⋅⎢ ⎥⎣ ⎦
 . (4.62)

and the following non-dimensional expression can be easily derived corresponding to equation (4.15) on 
the basis of the relationship (4.14): 

( ) ( )
232 22

2

16 *
1 0

t y t

qL qdd
GJ EI GJd

φ ζ φ
ζ

⎡ ⎤
⎢ ⎥

+ − − ⋅ =⎢ ⎥⋅⎢ ⎥
⎣ ⎦

 .  (4.63)

or, equivalently: 

( ) ( )
232 22

2 3

16 4 *1 0y

t y

qL EId d h
GJ EI h Ld qL

φ ζ φ
ζ

⎡ ⎤⋅
+ ⋅ − − ⋅ ⋅ ⋅ =⎢ ⎥

⋅ ⎢ ⎥⎣ ⎦
 .  (4.64)

and the following parameter has been already introduced 

( )23
2

16

t y

qL
k

GJ EI
=

⋅
 .  (4.65)

A further non-dimensional parameter k1 can be introduced considered depending on the quantities 
which controls the instability phenomenon, such as the EIy/qL3 ratio, related to the flexural strain 
induced by the external load, the d*/h and h/L ratios: 

1 3

4 *yEI d hk
h LqL

⋅
= ⋅ ⋅  .  (4.66)

and, finally, the following expression can be obtained 

( )
2 22 2

12 1 0d k k
d
φ ζ φ
ζ

⎡ ⎤+ ⋅ − − ⋅ =⎢ ⎥⎣ ⎦
 .  (4.67)

Equation (4.67) is formally similar to (4.17) and can be, hence, solved by considering a power 
series approximation of the unknown solution, considering n terms and obtaining n-1 independent 
equations which can be used to express the value of the n-1 constant as a function of A0. In the present 
case the critical value kcr depends also on the parameter k1; although no closed-form solutions can be 
found for kcr or qcr in the general case, the following one deals with the case of k1=0, namely, d*=0: 

3 3
16 cr cr

cr t y t y
k

q GJ EI GJ EI
L L

γ⋅
= ⋅ ⋅ = ⋅ ⋅  .  (4.68)
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Nevertheless, Figure 4.8 shows the values of the coefficient γcr determined through a numerical 
procedure as a function of k1; it is easy to verify that for k1=0 the same value reported in (4.68) can be 
found. On the contrary, the γcr value (namely the critical load qcr) hugely increases for k1>0 and, hence, 
for load applied beneath the centroid G, while decreases (although in a less sensitive way) for d*<0. 
This apparent asymmetry of the problems is actually very limited, since the values of k1 of practical 
interest are in the neighbours of zero, ranging from -0,10 to 0,10, as one can easily check by 
considering (4.66) and the typical values of the parameters involved within the definition of k1. 
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Figure 4.8: Values of kcr as a function of  k1 defined by (4.66) 

4.3 Code Provisions 
The above theoretical models dealing with lateral-buckling for elastic members, can be usefully 

utilized for better understanding the provision of two codes of standards devoted to steel structures. As 
proposed in the previous section for flexural buckling under axial load, both Italian and European 
provisions will be discussed. Some worked examples will be also proposed for pointing out some 
practical aspects of those provisions. 

4.3.1 Italian Code (CNR 10011, DM96) 
The mentioned Italian code proposes two alternative methods for checking flexural members 

against lateral-torsional stability: 
- the ω1-method; 
- the isolated flange method. 
The first one is based on the definition of an amplification coefficient ω1 for the normal stress in 

the compressed flange whose value is defined in terms of the beam depth-to-width and span-length-to-
flange-thickness ratios. No details is given herein about that method for the sake of brevity and the 
interested reader can find further information on the code text. 

On the contrary, the so-called isolated flange method is described in the following because of its 
significant meaningfulness under the mechanical standpoint. Indeed, the flange in compression is 
considered ad its slenderness is defined as the ratio between the effective span length L0 (defined 
according to the same rules described in the previous chapters depending on the end restraint 
conditions) and the transverse radius of inertia ρt which can be easily evaluated as follows: 

0
t

t

L
λ =

ρ
 .  (4.69)
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The corresponding value of the ω coefficient can be determined as a function of the transverse 
slenderness by utilizing either the stability curve c or d defined in section 2.8.1.1 for profiles respectively 
thinner or thicker than 40 mm. 

The axial stress acting on the flange in compression has to be amplified by the above mentioned 
ω coefficient as follows: 

eq
x

eqx
G ad

f x

M
S MI y f

A I

⋅
σ = ω⋅ ≈ ω⋅ ≤  .  (4.70)

with the following meaning of the involved symbols: 
- Af is the transverse area of the flange in compression; 
- Ix is the moment of inertia of the profile around the x-axis; 
- Sx is the static moment of the flange in compression with respect to the same axis; 
- yG is the distance between the centroid G and the section edge in compression. 
Furthermore, Meq is the equivalent bending moment which depends on the shape of the bending 

moment diagram throughout the beam axis and can be assumed according to the same rules reported in 
section 2.8.1.1. 

Finally, it is worth noticing that, according to equation (4.70), the lateral-torsional buckling 
occurrence can be intended as the out-of-plane flexural buckling of the section flange in compression. 

4.3.2 European Code (EC 3) 
The EC3 formulation of the lateral-torsional stability check of members in bending is more 

general as well as much more formally complex. The external relationship to be checked for verifying 
the member in bending against the onset of lateral-torsional buckling phenomenon is reported below: 

ay
b ,Rd LT w pl , y

M1

f
M W= χ β

γ
 .  (4.71)

where further symbols have been introduced. In particular, Wpl,y is the plastic modulus around the 
transverse axis (according to the EC3 assumption y-y and z-z are the two main centroidal axis as 
represented in Figure 2.19). Furthermore, the βw factor can be defined as follows depending on the 
class of the transverse section: 

- Class 1 and 2: w 1β = ; 
- Class 3: w el , y pl , yW Wβ = ; 
- Class 4: w eff , y pl , yW Wβ = ; 

with the same meaning of the symbols already introduced in chapter 2. The reduction factor LTχ  takes 
into account the effect of lateral slenderness on the occurrence of the lateral-torsional buckling. A 
similar definition to that provided by equation (2.75) for the reduction factor χ, can be utilized for χLT: 

LT 2 2
LT LT LT

1
χ =

Φ + Φ −λ
 ,  (4.72)

where LTλ  is the relative slenderness which even control the value of LTΦ  according to the following 
function 

( ) 2
LT LT LT LT0.5 1 0.2⎡ ⎤Φ = ⋅ + α ⋅ λ − + λ⎣ ⎦  .  (4.73)

The parameter LTα  represents an imperfection coefficient and its value can be assumed as 
follows: 

- hot-rolled section  LT 0.21α = ; 
- hot-rolled section  LT 0.49α = . 
The relative (or non-dimensional) slenderness LTλ  is defined as the square root of the ratio 

between the ultimate flexural strength of the transverse section (namely, the plastic moment for profiles 
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in classes 1 and 2, the yielding moment for profiles in class 3 and the effective one for profiles in class 
4) and the elastic lateral-buckling moment Mcr: 

w pl , y ay
LT

cr

W f
M

β ⋅ ⋅
λ =  .  (4.74)

The parameters affecting the critical moment resulting in lateral-torsional buckling for elastic 
members have been pointed out in the first section on the present paragraph. The following general 
relationship can be assumed the transverse section of whichever shape: 

( )
( ) ( )

22 2
2z tW

cr 1 2 g 2 g2 2
W z z

EI kL GJIkM C C z C z
k I EIkL

⎛ ⎞π ⎛ ⎞⎜ ⎟= ⋅ ⋅ + + −⎜ ⎟⎜ ⎟π⎝ ⎠⎝ ⎠

 ,  (4.75)

where the symbols have the meaning described below: 
- zg is the distance between the section centroid G and the actual point of application of the 

loads. It is assumed being positive if the load is applied above the centroid and, hence, the 
following relationship can be recognized with one of the parameters introduced in section 
4.2.5: gz d *= − ; 

- the factor kW is the coefficient related to the effective length of the beam with respect to the 
restraints to warping (namely, the possible deformation of the transverse section with respect 
to its plane). The value 0.5 is assumed for the double fix ends, while the value 1.0 is given in 
the case of free warping at the end. Finally, 0.7 can be assumed if warping is restrained on 
one end and free on the other one; 

- the factor k takes account of the end restraints in terms of twisting rotation. The value 0.5 
corresponds to full restraints, 1.0 to completely free scheme and finally 0.7 can be taken in 
the intermediate situation; 

- the parameter Jt is torsional stiffness; 
- the parameter Iz is moment of inertia around the weak axis (Iy throughout the previous 

section devoted to the theoretical bases); 
- the parameter IW is the so-called warping constant which is a sort of second moment of the 

moments of inertia. For the doubly symmetric I-shaped sections, the following relationship 
exists between IW and Iz: 

( )2z f
W

I h t
I

4

⋅ −
=  .  (4.76)

- L is the beam span length; 
- the constants C1 and C2 can be taken by Table 4.1 and Table 4.2 depending on the shape of 

the bending moment diagram throughout the beam axis. 
With the aim of better clarifying the meaning of the factors k and kW, Figure 4.9 shows different 

restraining conditions regarding twisting rotation and warping. 

 
Figure 4.9: Different restraint condition on twisting rotation and warping 
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The general equation (4.75) can be simplified in some cases of practical interest such as: 
- transversal load applied on the centroidal point G (which for doubly symmetric profiles 

coincides with the shear centre): 

( )
( )22 2

z tW
cr 1 2 2

W z z

EI kL GJIkM C
k I EIkL

⎛ ⎞π ⎛ ⎞⎜ ⎟= ⋅ ⋅ +⎜ ⎟⎜ ⎟π⎝ ⎠⎝ ⎠

 ,  (4.77)

- fully fixed beam with transversal load applied in G: 

( )
( )2 2

z tW
cr 1 2 2

z z

EI kL GJIM C
I EIkL

⎛ ⎞π ⎜ ⎟= ⋅ +
⎜ ⎟π
⎝ ⎠

 ,  (4.78)

Table 4.1: Coefficients of equivalent uniform moment for linear diagrams (end forces). 
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Table 4.2: Coefficients of equivalent uniform moment for general cases (distributed loads). 

 
 

4.4 Worked examples 
The following examples are proposed for pointing out some practical aspects related to lateral-

torsional stability checks in steel beams in bending. 

4.4.1.1 Lateral torsional stability check simply supported beam 

Let us consider the simply supported beam in Figure 4.10 under the following uniformly 
distributed loads: 

- Dead Load   gk=9.0 kN/m; 
- Live Load  qk=6.0 kN/m; 
 
 

 
Figure 4.10: Simply supported beam with torsional end restraints. 

 
The transverse section of the beam is realized by a standard IPE270 profile whose key geometric 

properties are listed below (steel grade S235): 
- depth h 270 mm; 
- width b 135 mm; 
- flange thickness tf 10.2 mm; 
- web thickness tw 6.6 mm; 
- chord radius r 15 mm; 
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- section area A 45.94 cm2; 
- self-weight per unit length gk 0.35 kN/m; 
- moment of inertia around the strong axis Iy 5790 cm4; 
- moment of inertia around the weak axis Iz 420.0 cm4; 
- torsional constant Jt 15.94 cm4; 
- warping constant IW 0.071 cm6; 
- plastic modulus around the strong axis Wpl,y 484.0 cm4; 
- plastic modulus around the weak axis Wpl,z 96.95 cm4; 
- span length L 6.00 m. 

4.4.1.1.1 Lateral-torsional stability check according to the Italian Code provisions. 
The isolated-flange method can be utilized for carrying out the safety check against lateral-

torsional buckling according to the Italian Code provisions. The procedure follows the steps reported 
below: 

Step #1: evaluation lateral slenderness of the flange in compression: 
Since rotational restraints are considered at both ends the effective length (evaluated taking only 

account of the rotational restraints) is L0=L/2. Moreover, the out-of-plane radius of gyration of the 
profile flange can be easily evaluated 

135 38.97 
12 12t
b mm= = =ρ  , (4.79)

and the corresponding slenderness is: 
0 3000 76.98

38.97t
t

L
= = =λ
ρ

 . (4.80)

Finally, the plastic slenderness can be evaluated as follows: 
210000 93.91

235
a

p
ay

E
f

= = =λ π π  . (4.81)

Step #2: evaluation of the ω factor: 
Since the flange stiffness is smaller than 40 mm the curve c mentioned in section 2.8.1 has to be 

considered. The non-dimensional slenderness 0.81t p =λ λ  leads to the following value for the ω factor: 
1.540=ω  , (4.82)

Step #3: evaluation of the compressive stress in the flange: 
The maximum bending moment throughout the beam axis can be easily evaluated as follows: 

( )( ) ( )( )
 

2 2
g k k q k

max
g g ' q L 1.4 0.35 9.0 1.5 6.0 6

M 99.4 kNm
8 8

γ + + γ ⋅ ⋅ + + ⋅ ⋅
= = =  , (4.83)

and the following mean value can be assumed because of the sinusoidal shape of the bending moment 
diagram: 

 m max
2 2M M 99.4 66.26 kNm
3 3

= ⋅ = ⋅ =  , (4.84)

and the equivalent moment is  
 eq mM 1.3 M 1.3 66.26 86.14 kNm= ⋅ = ⋅ =  , (4.85)

which is included within the range [0.75 Mmax, Mmax]. 
Since the flange thickness is negligible with respect to the beam depth, the approximation in 

equation (4.70) is acceptable (being on the conservative side) and the following value of the 
compressive stress can be evaluated. 

6eq
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f

M 86.14 10S 135 10.2I 5.8 101,540
A

⋅⋅ ⋅ ⋅
⋅σ = ω⋅ = ⋅

( )135 5.1

135 10.2

⋅ −

⋅ ad297.10MPa f 235.= ≥ =  , (4.86)

and the stability check against lateral-torsional buckling is not satisfied. 
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4.4.1.1.2 Lateral-torsional stability check according to the EC3 provisions. 
The same exercise can be also faced within the framework of the EC3 provisions which can be 

applied following step-by-step the formulae reported in section 4.3.2. 
Step #1: classifying the transverse section: 
Since the adopted steel grade is fy=235 MPa, the value ε=1 can be assumed for the parameter 

mentioned in Table 2.3 and Table 2.4. The following values of the length-to-thickness ratios can be 
evaluated for flange and web: 

- flange  c/tf=(135/2)/10.2=6.6≤10 Class 1; 
- web  d/tw=(270-2·10.2-2·15)/6.6=33.3≤72 Class 1 
Finally, the profile IPE270B made out of steel S235 is in class 1 if loaded in bending. 
Step #2: evaluating the critical moment for the elastic beam: 
According to the assumed hypotheses on the transverse section and the end restraint conditions, 

the following values can be assumed for the parameters involved in equation (4.77) which can be 
properly considered because the transverse load is applied of the shear centre (namely, the centroid G) 
of the transverse section: 

- C1=0.972; 
- k=0.5; 
- kW=1.0; 
and the critical moment can be derived by the mentioned relationship: 
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 , (4.87)

 
Step #3: evaluating the non dimensional lateral slenderness: 
According to the definition provided in equation (4.74), the value of the non-dimensional 

slenderness can be easily quantified: 

w pl , y ay
LT 6
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W f 1.0 484000 235 1.021
M 109.18 10
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λ = = =

⋅
 .  (4.88)

Step #4: evaluating the reduction factor χLT: 
The term LTΦ  has to be firstly determined as a function of the non-dimensional slenderness and 

the imperfection coefficient LT 0.21α = : 
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 .  (4.89)

Consequently, the following value of the reduction factor can be derived according to equation 
(4.72): 

LT 2 2

1 0.652
1.107 1.107 1.021

χ = =
+ −

 ,  (4.90)

 
Step #5: evaluating design value of the resisting moment Mb,Rd: 
The bending moment resulting in the occurrence of the lateral-torsional buckling phenomenon 

can be easily evaluated as a design value according to equation (4.71): 
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 .  (4.91)
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which is greater than the corresponding external moment  Sd maxM M 99.4 kNm= = . Consequently, the 
lateral-torsional stability check is not satisfied neither according to the EC3 provisions. 

 

4.5 Unworked examples 
The following exercises are left to the readers: 

1) for the same beam reported in paragraph 4.4.1.1.1, what is the maximum value of the live loads 
qk for the beam to comply with the lateral-torsional stability check according to the Italian Code 
provisions?; 

2) for the same beam reported in paragraph 4.4.1.1.1, what is the maximum span length for the 
beam to comply with the lateral-torsional stability check according to the Italian Code 
provisions?; 

3) for the same beam reported in paragraph 4.4.1.1.1, design the transverse section to comply with 
the lateral-torsional stability check according to the Italian Code provisions; 

4) for the same beam reported in paragraph 4.4.1.1.2, evaluate the resisting moment Mb,Rd against 
the lateral-torsional buckling phenomenon considering that the same loads acts either at the 
bottom (case 1) or the top (case 2) of the section; 

5) for the same beam reported in paragraph 4.4.1.1.2, perform the same lateral stability check with 
reference to a steel grade S355; 

6) for the same beam reported in paragraph 4.4.1.1.2, perform the same lateral stability check 
considering a cantilever scheme with length L=3.00 m. 


