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2.8 Code specifications for beam columns 

Code provisions on stability of beam-columns can be regarded under the light of the general 
theoretical bases outlined within the previous sections whose contents are a fundamental background 
for whatever design-oriented discussion on stability of members and structures. 

In the present paragraph the basic provisions of two codes of standards of interest for designers 
mainly working in Italy and Europe will be described and commented with reference to the key aspects 
related to stability checks of steel members. Indeed, the basic provisions of both the Italian Code (D.M. 
96 [12]) and the European one (Eurocode 3, [13] and [14]) will be analyzed. 

Global stability will be basically discussed even if some insights above local buckling possibly 
affecting steel members will be even addressed with particular reference to the main rules provided by 
Eurocode 3. 

2.8.1 Stability check of beam-columns according to Eurocode 3  

A more general approach to stability of beam-columns is pursuit in Eurocode 3 in which a clear 
difference is firstly stated among steel members depending on the geometric and mechanical properties 
of their cross section. Consequently, steel profiles are divided into four different classes with respect to 
their ultimate behaviour in terms of both (flexural) strength and ductility. The first of the following 
subsections will explain with enough details this issue, while the other two will deal with the stability 
check of members under axial load with or without eccentricity. 

Finally, it is worth noticing that safety checks in EC3 are formulated within the general 
framework of the Limit States Methods. Consequently, stability check deals with the Ultimate Limit 
State of the member and the action can be combined according to a rule like the one reported by 
equation (2.72). Similar formula can be even assumed for defining the design strength of material, but a 
more complicated way of defining the value of partial safety factor is considered in EC3, in which a 
different value has to be taken into account depending on the kind of failure mechanism of concern. 
Precisely, a value γ =1 1.05M  can be assumed for Stability while all the other possible values of the safety 

factors are reported in Table 2.1 for the sake of completeness. 

Table 2.1: Values of the safety factors according to EC3. 

Elastic limit state of the section γM=1.00

Plastic collapse of the structure γM=1.12

Transverse section in Class 1, 2, 3 γM0=1.05

Transverse section in Class 4 γM1=1.05

Stability of members γM1=1.05

Strength of net section γM2=1.20

Bolts γMb=1.35

Rivets γMr=1.35

Pivots γMp=1.35

Angle welds γMw=1.35

Weldings in first class γMw=1.05

Weldings in secondo class γMw=1.20

Ultimate Limit State γMs,ult=1.25

Serviceability Limit State γMs,ser=1.25

Ultimate Limit State (lerger holes) γMs,ult=1.50

FATIGUE Fatice strength γMf=1.00

Non welded γC1=1.00

Welded γC2=1.50

LIMIT STATE SUBJECT
SAFETY 
FACTORS

MATERIALE

JOINTS

FRICTION JOINTS

FRAGILITY

 

2.8.1.1 Classification of steel cross sections 

Behaviour of structural steel is ductile in behaviour since huge values of ultimate strain can be 
developed, namely in tension, after yielding. Nevertheless, slenderness of both section and member as a 
whole can undermine the natural ductility of steel as compression arises. Since, the above discussion 
mainly focused upon the global buckling issue, the present section will address the aspects related to 
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local buckling of steel members which hugely affects their flexural behaviour. In particular, four 
different classes of profiles can be defined looking after their behaviour in terms of sectional strength 
and ductility, qualitatively depicted in Figure 2.14 in terms of moment-curvature relationships. 

 

Figure 2.14: Possible moment-curvature behaviour for steel profiles. 

In particular, the four classes corresponding to the various responses represented in the 
mentioned figure will be defined as follows: 

- Class 1 cross-sections are those can form a plastic hinge with the rotation capacity required 
for plastic analysis; 

- Class 2 cross-sections are those which can develop their plastic moment resistance,  but have 
limited rotation capacity; 

- Class 3 cross-section are those in which the calculated stress in the extreme compression 
fibre of the steel member can reach its yield stress, but local buckling is liable to prevent 
development of the plastic moment resistance; 

- Class 4 cross-sections are those in which local buckling will occur before the attainment of 
yield stress in one or more parts of the cross-sections. 

Beam-column sections can be classified into one of the above classes depending upon the three 
aspects listed below: 

- effective length-to-thickness d/t of web and free length-to-thickness b/t of flanges; 
- state of stress (pure bending, pure compression or bending and compression); 
- grade of steel, being stronger steels more sensitive to local buckling phenomenon than 

weaker ones. 
Table 2.2 summarizes the above concepts with reference to the most common hot-rolled I-

shaped sections; similar tables can be found in EC3 for other joist sections. 
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Table 2.2: Classification of sections for local buckling according to EC3: webs. 
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Table 2.3: Classification of sections for local buckling according to EC3: flanges. 

 
The web and the flanges of the section can be classified according to their dimensions, the steel 

grade and the state of stress according to the rules briefly reported in Table 2.2 and Table 2.3. The 
section as a whole has to be classified in class of the most slender of its members. If such a section falls 
in Class 4, local stability occurs before of yielding moment and, consequently, the flexural strength of 
the member cannot be completely developed. For this reason an effective section have to be 
determined by reducing the compressed area of web and flange in order to obtain a reduced virtual 
section to be considered in both strength and stability check. The way in which such section can be 
determined are not completely explained within this notes for the sake of brevity; nevertheless, the 
reader could directly refer to Eurocode 3 (section 6.2.2.5) for this topic. 

2.8.1.2 Stability check under axial load 

Stability check under axial load can be carried out through the following inequality: 

χ β
γ

≤ = min

1

ay

Sd Rd A

M

f
N N A  , (2.59) 

being ( )χ χ λ χ λ=min min ( ); ( )x y  a reduction factor related to the relative slenderness λ  defined as 

follows: 

β
λ =

A y

cr

Af

N
 . (2.60) 

The factor βA  is defined as a ratio between the effective area and the gross section area; for 

section belonging to the first three classes defined above β = 1A , while values smaller than the unity 

characterize profiles in class 4. Further details about the definition of the effective area for Class 4 
profiles will be given in the following. If β = 1A , the following relationship can be stated between the 

relative slenderness λ , the absolute one λ  and the critical one λp : 
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 . (2.61) 

Under a conceptual standpoint the parameter χ  is basically the inverse of the ω  factor reducing 

plastic strength of the section for looking after the global slenderness λ  on the column. The 

relationship ( )ω λ  depends once more by the kind of imperfections and, consequently, by the type of 

profile. Four curves denoted as a, b, c and d can be utilized for that relationship: 
- Curve a represents quasi perfect shapes: hot-rolled I-sections (h/b>1,2) with thin flanges 

(tf≤40mm) if buckling is perpendicular to the major axis; it also represents hot-rolled hollow 
sections; 

- Curve b represents shapes with medium imperfections: it defines the behaviour of most 
welded box-sections; of hot-rolled I-sections buckling about the minor axis; of welded I-
sections with thin flanges (tf > 40mm) and of the rolled I-sections with medium flanges 
(40<tf≤100mm) if buckling is about the major axis; it also concerns cold-formed hollow 
sections where the average strength of the member after forming is used; 

- Curve c represents shapes with a lot of imperfections: U, L, and T shaped sections are in this 
category as are thick welded box-sections; cold-formed hollow sections designed to the yield 
strength of the original sheet; hot-rolled H-sections (h/b ≤ 1,2 and tf ≤ 100mm) buckling 
about the minor axis; and some welded I-sections (tf ≤ 40mm buckling about the minor axis 
and tf > 40mm buckling about the major axis); 

- Curve d represents shapes with maximum imperfections: it is to be used for hot-rolled I-
sections with very thick flanges (tf > 100 mm) and thick welded I-sections (tf > 40 mm), if 
buckling occurs in the minor axis. 

Figure 2.15 shows how to choose the right curve for each shape and bending direction according 
to the properties mentioned above. 

 

Figure 2.15: Stability curves for the various kinds of profiles. 
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Once the right curve has been chosen the value of χ  can be determined; different curve have to 

be used for determining the corresponding χ  values with reference to the two principal axis of the 

section. 

 

Figure 2.16: Stability curves according to EC3. 

The curves in Figure 2.16 can be are defined by the following general relationship in terms of the 
non-dimensional slenderness defined by equation (2.60): 

2 2

1
1.0χ

λ
= ≤

Φ + Φ −
 , (2.62) 

with 

( ) 20.5 1 0.2α λ λ Φ = ⋅ + ⋅ − +   . (2.63) 

The parameter α is related to the level of imperfection affecting the structural member; since 

four curves have been introduced for describing the various kinds of imperfections, four values of α 
have to be considered, each one for the corresponding stability curve (Errore. L'origine riferimento 
non è stata trovata.). 

Table 2.4: Imperfection factors for buckling curves. 

 

2.8.1.3 Stability check under eccentric axial load 

Since there slight differences exist between the method for stability check of members under 
eccentric loads according to the ENV version [7] and the final EN one [14], both procedures will be 
proposed in the following. Indeed, while the first one is not yet valid, in the authors’ opinion, it is more 
suitable for grasping the mechanical meaning of the various terms whose final EN formalization seems 
only formally more complicated. Moreover, since in the symbols adopted within the Eurocodes,  y and 
z are the two principal axes of inertia, this choice will be assumed in the following sections. 

2.8.1.3.1 ENV 1-1-1993 [13] procedure. 

Different formulae are provided depending on the class of the cross section. If it belongs to 
Classes 1 or 2 the following relationship, conceptually close to the one in equation (2.76) has to be 
considered: 
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(2.64) 

where the coefficient ( )χ χ λ χ λ=min min ( ); ( )y z  can be evaluated according to the above remarks. Plastic 

moduli ,pl yW  and ,pl zW  are considered since plastic bending moment can be completely developed in 

class 1 and 2 profiles. Second-order effects and the shape of diagram are considered through the factors 
ky and kz, the first of which is defined as follows: 

µ

χ
= −1

y Sd

y

y ay

N
k

Af
 , (2.65) 

and  

( )µ λ β
−

= ⋅ − +
, ,

,

2 4
pl y el y

y y My

el y

W W

W
 , (2.66) 

and, finally, the value of βM  accounts for the shape of bending moments and can be deduced by 

Figure 2.17. 
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Figure 2.17: βΜ factors depending on the shape of bending moment diagram. 

Stability check of beam columns in class 3 can be carried out by simply substituting the plastic moduli 
with the elastic ones in equations from (2.64) to (2.66). Finally, for slender sections (Class 4) the relevant 
properties (area and strength moduli) of the effective section have to be evaluated and the bending 
moments need to be updated for taking into account the eccentricities eN,x and eN,y between the original 
centroid and the one of the effective section: 

= + ⋅, , , ,y Sd eff y Sd y Sd NyM M N e  . (2.67) 
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2.8.1.3.2 EN 1-1-1993 [14] procedure. 

Few formal variations has been introduced in the final version of the Eurocode accepted as EN. 
In particular, a general expression for the stability check of beam-columns is proposed in the following 
form: 

, ,

, ,

1 1 1

, ,

, ,
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 , (2.68) 

provided that no lateral-torsional buckling phenomena (which will be addressed in the 4th chapter) 
exist. 

The values of NRk, My,Rk and Mz,Rk are defined in the following general form: 
=Rk i ayN A f  , (2.69) 

=,y Rk y ayM W f                =,z Rk z ayM W f  . (2.70) 

The geometrical properties reported in equations (2.69) and (2.70) can be assumed depending on the 
class of the transverse section as briefly summarized in Table 2.5. 

Table 2.5: Values of geometrical properties depending of class section. 

 
 
No substantial differences exist among the aspects described above. Nevertheless, as one 

compare equation (2.64) (and the corresponding ones for sections in class 3 or 4) with equation (2.68) 
can easily observe the key difference between the two approaches. In fact, four interaction factors kij 
(rather than two) are involved in equation (2.68) meaning that the bending contribution is different in 
the cases of buckling occurring either in y or z direction. 

Table 2.6: Interaction factors according to Method 2 – Annex B [14]. 
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Two alternative approaches are reported in EC3 [14] for determining the values of such factors; 
they are reported in two different annexes at the same document. Only the so-called “Method 2” 
reported in Annex B is explicitly reported herein for the sake of brevity; its formulation for the case in 
which members are not susceptible of lateral-torsional buckling is summarized in Table 2.6. Finally, 
Table 2.7 summarized how the equivalent uniform moment factors have to be evaluated according to 
the mentioned Method 2. 

Table 2.7: Equivalent uniform moment factors according to Method 2 – Annex B [14]. 

 

2.8.2 Stability check of beam-columns according to the Italian Code 

A new Code of Standards (New Technical Code, NTC in the following) has been recently issued 
in Italy through the D.M. 14/01/2008 which basically adopts the basic philosophy and most of the 
specific formulations provided by Eurocodes.  

Consequently, one of the most relevant innovations with respect to the past Italian Codes 
consists in adopting the Limit States as the unique method for measureing structural safety and carrying 
out the strength and stability checks of members and strutures. 

 
The usual equation of safety checks according to Limit States Method can be consequently 

introduced as the design value of stresses Sd should not be greater than the corresponding design value 
of Resistance Rd: 

≤d dS R  . (2.71) 

Stability check is one of the possible Ultimate Limit Verifications to be carried out on structures. 
Design values of stresses have to be derived by analyzing the structure under the design forces obtained 
by the well-known combination of permanent (self weights Gk and permanent loads Gk’) and live 
actions Qk: 

( )γ γ ψ
=

 
= ⋅ + + ⋅ + 

 
∑1 0

2

'
n

d g k k q k i ki

i

F G G Q Q  . (2.72) 

Resistance Rd can be generally evaluated with reference to the design values of material strengths; 
in particular, yielding stress fyk is the mechanical properties of key importance for steel structures and 
the design value can be obtained as a function of the characteristic one through the definition of the 

partial safety factors γm: 

γ
=

yk

ad

m

f
f  . (2.73) 
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The relevant numerical values to be considered within equation (2.73) are basically the same 
reported in Table 2.1.  

Two possible ways can be followed for evaluating the design strength Rd of members as a 
function of material properties fad: 

- plastic analysis of cross section in class 1 and 2 could be carried out for deriving the ultimate 
(plastic) bending moment of members as follows: 

=Rd pl adM W f  ; (2.74) 

 
- conventional elastic analysis of cross section in class 3 could be even carried out for 

evaluating the ultimate (plastic) bending moment of members: 
=Rd el adM W f  ; (2.75) 

 

2.8.2.1 Stability check under axial load 

Stability check is one of the key steps for steel members according to the present code and it is 
carried out according to the same method presented in section 2.8.1.2.  

2.8.2.2 Stability check under eccentric axial load 

Eccentricity hugely affects both strength and stability checks in steel members and the validity of 
the following relationship has to be verified for the member not to fail in buckling: 

 , 

(2.76) 

where bending moments Mx and My around the two principal axes of inertia of the section are involved 
through an equivalent value whose meaning will be better explained in the following; magnification 
factors also appear for amplifying the stress contributions of bending moments. The parameters Wy 
and Wz can be chosen according to the usual criterion: 

- sections in class 1 or 2: Wy=Wpl,y and Wz=Wpl,z; 
- section in class 3: Wy=Wel,y and Wz=Wel,z. 
The two values of the critical loads in y and z directions can be easily evaluated as a function of 

the geometrical properties of the column and its cross section: 

=

2

, 2
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π
 , =
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, 2
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cr z
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EI
N

L

π
 . (2.77) 

Finally, the meaning of the equivalent bending moments Meq needs to be clarified as a function of 
the shape of the corresponding diagram. First of all, equivalent bending moment Meq=M0 as an uniform 
bending moment diagram is considered. Secondly the following relationship can be considered among 

the equivalent value and the two nodal ones Ma and Mb, being ≥a bM M : 

= − ≥0.6 0.4 0.4eq a b aM M M M  . (2.78) 

 

Figure 2.18: Equivalent bending moment for stability check of beam-columns. 

In a more general case of non linear (i.e. parabolic) shape of the bending moment diagram the 
equivalent bending moment can be determined as follows: 
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= 1.3eq mM M  . (2.79) 

mM  being the average value of bending moment throughout the column axis and always considering 

the following limitation: 
≤ ≤max max0.75 eqM M M  . (2.80) 

 
Finally, Italian code also allows designers to consider the formulation reported in paragraph 

2.8.1.3.2 for performing stability checks of beam columns. 

2.9 Applications 

Application of the above theory is proposed in the following. Some worked examples deal with 
the main topics covered by this section, while few unworked one are left to the reader. 

2.9.1 Worked examples 

Three worked examples dealing with the key topics discussed in the above sections are proposed 
in the following. 

2.9.1.1 Euler load for a generally restrained beam-column 

The first example deals with the evaluation of the Euler critical load for a generally restrained 
beam-column. In particular, flexible restraints are present at both ends and their flexibility is defined as 
follows: 

=
10

col
A

col

L

EI
ε  , (2.81) 

5
col

B

col

L

EI
ε =  . (2.82) 

being Lcol=5.0 m the member span length and Icol the moment of inertia of the transverse section with 
reference to an axis normal to the plane of possible buckling occurrence.  The beam-column is 
represented in Figure 2.19; since it is a non-sway member equation (2.44) or the alignment chart in 

Figure 2.10a has to be used for evaluating the effective length L0 or, equivalently, the β coefficient to be 
adopted in equation (2.43).  

 

Figure 2.19: Structural scheme of the beam-column. 

First of all, the values of the non-dimensional flexibilities kA and kB have to be determined according to 
their definition: 

1
0.10

10
A

A

col col

k
L EI

ε
= = =  , (2.83) 



STABILITY OF STRUCTURES 

Dr. Enzo MARTINELLI 41 Draft Version 14/11/2008 

1
0.20
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col col

k
L EI

ε
= = =  . 

As a matter of principle, the corresponding value of the β coefficient is within the range [0.5, 1.0], 
being the column a non-sway member. The equation (2.44) can be applied for determining its value: 

0.10 0.20
0.5 1 1 0.622

0.45 0.10 0.45 0.20
β

   
= ⋅ + ⋅ + =   

+ +   
 . (2.84) 

The above value is rather conservative with respect to the one which could be derived by the alignment 
chart in figure Figure 2.10a, as desirable for an approximate formula. 

2.9.1.2 Stability check of an axially loaded beam-column 

Let us consider a member in compression whose transverse section is realized by a profile HE 
200 B made out of steel S235. The overall span length of the member is 7.5 m and displacement in the 
direction perpendicular to the web plane constraints the displacements in that direction (Figure 2.20). 

 

Figure 2.20: Beam-column under axial force. 

The transverse section of the beam is characterized by the following geometrical parameters: 
- depth  h 200 mm; 
- width  b 200 mm; 
- flange thickness tf 15 mm; 
- web thickness  tw 9 mm; 
- radius r 18 mm; 
- area A 7810 mm2; 
- Moment of inertia with respect to the strong axis Iy 5696 104 mm4; 
- Moment of inertia with respect to the weak axis Iz 2003 104 mm4. 
For the sake of brevity the exercise will be only solved with reference to the EC3 provisions for 

stability check. 
Step #1: classification of the transverse section: 

Since the adopted steel grade is fy=235 MPa the value ε=1 can be assumed for the parameter 
mentioned in Table 2.2and Table 2.3. The following values of the length-to-thickness ratios can be 
evaluated for flange and web: 

- flange  c/tf=(200/2)/15=6.7≤10 Class 1; 
- web  d/tw=(200-2·15-2·18)/9=14.9≤33 Class 1 
Finally, the profile HE200B made out of steel S235 is in class 1 if loaded in compression. 
 
Step #2.1: evaluating the (elastic) Euler load for buckling along the strong axis: 
Since hinged restraints can be recognized for both ends and no further constraints control 

displacements in the mentioned direction, the effective length L0,y is equal to the nominal one (L=7500 
mm) and the Euler load can be easily derived: 
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Step #2.2: evaluating relative (non-dimensional) slenderness along the strong axis: 
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A ay
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Step #2.3: determination of the reduction factor χy: 
According to Figure 2.15 the profile follows the curve b and, consequently, the following value of 

the reduction factor χy can be evaluated: 

( ) ( )2 20.5 1 0.2 0.5 1 0.34 0.935 0.2 0.935 1.062y y yα λ λ   Φ = ⋅ + ⋅ − + = ⋅ + ⋅ − + =  
 , (2.87) 

and  

2 2 2 2

1 1
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y y y
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= = =
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 . (2.88) 

Step #3.1: evaluating the (elastic) Euler load for buckling along the weak axis: 
Since transverse displacements are constrained at mid-span, the effective length L0,z is one half of 

the nominal one (L=7500 mm) and the Euler load can be easily derived: 
2 2

, 2 2
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210000 20030000
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Step #3.2: evaluating relative (non-dimensional) slenderness along the weak axis: 
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Step #3.3: determination of the reduction factor χy: 
According to Figure 2.15 the profile follows the curve c and, consequently, the following value of 

the reduction factor χz can be evaluated: 

( ) ( )2 20.5 1 0.2 0.5 1 0.49 0.788 0.2 0.788 0.955z z zα λ λ   Φ = ⋅ + ⋅ − + = ⋅ + ⋅ − + =  
 , (2.91) 

and  

2 2 2 2
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z z z
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= = =
Φ + Φ − + −

 . (2.92) 

Step #4: evaluating the ultimate axial load capacity: 
The minimum value of the reduction factor evaluated along the two directions has to be 

considered for determining the ultimate bearing capacity of the member. 

, min

1

235
0.6387 7810 1116.4 

1.05

ay

b Rd A

M

f
N A kNχ β

γ
= = ⋅ ⋅ =  . (2.93) 

2.9.1.3 Stability check of an eccentrically loaded beam-column 

The beam-column represented in Figure 2.21 has the same transverse section described in the 
previous example. Transverse displacements are constrained at the top of the column since the two 

following values of the β coefficient can be assumed: 

- buckling in the strong direction (perpendicular to y axis)   βy=2.0; 

- buckling in the weak direction (perpendicular to z axis)   βz=1.0; 
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Figure 2.21: Beam-column under eccentric axial force. 

Step #1: classification of the transverse section: 
According to the findings of the previous exercise, the profile HE200B made out of steel S235 is 

in class 1 if loaded in compression. 
Step #2.1: evaluating the (elastic) Euler load for buckling along the strong axis: 
Since hinged restraints can be recognized for both ends and no further constraints control 

displacements in the mentioned direction, the effective length L0,y is equal to the nominal one (L=7500 
mm) and the Euler load can be easily derived: 
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Step #2.2: evaluating relative (non-dimensional) slenderness along the strong axis: 
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Step #2.3: determination of the reduction factor χy: 
According to Figure 2.15 the profile follows the curve b and, consequently, the following value of 

the reduction factor χy can be evaluated: 

( ) ( )2 20.5 1 0.2 0.5 1 0.34 0.748 0.2 0.748 0.873y y yα λ λ   Φ = ⋅ + ⋅ − + = ⋅ + ⋅ − + =  
 , (2.96) 

and  

2 2 2 2

1 1
0.7559

0.873 0.873 0.748
y

y y y

χ
λ

= = =
Φ + Φ − + −

 . (2.97) 

Step #3: evaluation of the relevant interaction factors: 
Since no bending moment is applied around the z-axis the only interaction factor to be 

determined for applying the first one of the two equations (2.78) is the term kyy. Linear variation can be 
observed for the bending moment around y-axis, which varies from the two following values: 

- , , 100 0.40 40 y Sd top dM N e kNm= ⋅ = ⋅ = ; 

- , , 100 0.40 20 3.0 100 y Sd bottom d dM N e F H kNm= ⋅ + ⋅ = ⋅ + ⋅ = ; 

Consequently, the maximum moment to be considered in equation (2.78) is My,Sd= 100 kNm and, 
according to Table 2.7 the following value can be assumed for the equivalent uniform moment factor 
Cm,y: 

Nd=100 kN 
Fd=20 kN

e=400mm 

H=3000 mm 

z 
y
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, ,

, ,

40
0.40

100

y Sd top

y Sd bottom

M

M
ψ = = =  ï , 0.6 0.4 0.76m yC ψ= + =  . (2.98) 

Finally, the value of the interaction factor kyy can be derived according to the formulae reported 

in the first row of Table 2.6, provided that 1.0yλ < : 

( ) ( )
1

100000
1 0.2 0.76 1 0.748 0.2 1.042

/ 0.748 7810 235/1.05
Sd

yy my y

y ay M

N
k C

Af
λ

χ γ

   
= ⋅ + − ⋅ = ⋅ + − ⋅ =   ⋅ ⋅   

. (2.99) 

 
Step #4.1: evaluating the (elastic) Euler load for buckling along the weak axis: 
Since transverse displacements are constrained at mid-span, the effective length L0,z is one half of 

the nominal one (H=6000 mm) and the Euler load can be easily derived: 
2 2

, 2 2
0,

210000 20030000
4612.45 

3000

z

cr z

z

EI
N kN

L

π π ⋅
= = =  . (2.100) 

Step #4.2: evaluating relative (non-dimensional) slenderness along the weak axis: 

3
,

1 7810 235
0.631

2952.1 10

A ay

z

cr z

Af

N

β
λ

⋅ ⋅
= = =

⋅
 . (2.101) 

Step #4.3: determination of the reduction factor χy: 
According to Figure 2.15 the profile follows the curve c and, consequently, the following value of 

the reduction factor χz can be evaluated: 

( ) ( )2 20.5 1 0.2 0.5 1 0.49 0.631 0.2 0.631 0.805z z zα λ λ   Φ = ⋅ + ⋅ − + = ⋅ + ⋅ − + =  
 , (2.102) 

and  

2 2 2 2

1 1
0.7664

0.805 0.805 0.631
z

z z z

χ
λ

= = =
Φ + Φ − + −

 . (2.103) 

Step #5: evaluation of the relevant interaction factors: 
Since no bending moment is applied around the z-axis the only interaction factor to be 

determined for applying the second one of the two equations (2.78) is the term kzy. An easy relationship 
is stated for determining this factor as a function of kyy as follows: 

0.6 0.625zy yyk k= =  . (2.104) 

Step #6: final stability check: 
The two equations (2.78) can be finally applied for checking the given structure against global 

buckling: 
100000 100000000

1.042 0.076 0.011 0.087 1
0.7559 7810 235 0.7559 56960000 235

1.05 1.05

100000 100000000
0.625 0.075 0.018 0.093 1

0.7664 7810 235 0.7664 20030000 235

1.05 1.05

+ ⋅ = + = ≤
⋅ ⋅ ⋅ ⋅

+ ⋅ = + = ≤
⋅ ⋅ ⋅ ⋅

 . (2.105) 

 

2.9.2 Unworked examples 

The following exercises are left to the readers: 

1) for the same beam-column reported in paragraph 2.9.1.1, evaluate the β coefficient in the case 
of sway member. Compare the results obtained by the simplified formula and the alignment 
chart; 

2) for the same beam-column described in paragraph 2.9.1.2, evaluate the ultimate load bearing 
capacity according to the Italian Code; 
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3) for the same beam-column described in paragraph 2.9.1.2, evaluate the ultimate load bearing 
capacity considering a steel grade s355; 

4) for the same beam-column described in paragraph 2.9.1.3, evaluate the maximum lateral load 
FSd,max with reference to the global stability check of the structure; 

5) for the same beam-column described in paragraph 2.9.1.3, perform the stability check according 
to the Italian code. 


